IMPROVING MICROPROPAGATION PROTOCOL FOR CAROB (Ceratonia siliqua)

PDF

Published: 2021-10-25

Page: 84-94


MANAL EL-SALATO ALA EL-NABY AHMED

Tissue Culture Unit, Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo, Egypt.

REDA EL-SAYED ABO EL-FADL

Tissue Culture Unit, Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo, Egypt.

GHADA ABD EL-MONEIM HEGAZI *

Tissue Culture Unit, Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo, Egypt.

TAMER MAHFOUZ ABD ELAZIEM

Tissue Culture Unit, Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo, Egypt.

*Author to whom correspondence should be addressed.


Abstract

Carob (Ceratonia siliqua, Fabaceae) is a Mediterranean tree with socio-economic and ecological interests. The conventional propagation of carob is difficult, therefore, micropropagation offers an efficient alternative to respond to the increasing demand for this valuable plant. In vitro culture establishment of explants from an adult tree was successfully performed on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BAP) and 2.46 μM 2-isopentenyladenine (2iP) for stem node segments, while direct organogenesis from leaf segments was optimum on MS medium supplemented with 4.54 μM 1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea (TDZ). Leaf segments produced twice the number of shoots (10.67 shoots/explant), compared to the stem node segments. The highest proliferation of shoots was observed on MS medium supplemented with 8.9 μM BAP and 2.46 μM 2iP. Root induction was observed on the shoots cultured on MS medium supplemented with 9.8 μM indole-3-butyric acid (IBA) and 1.9586 μM tryptophan (Trp) on 86.67% of shoots. Well rooted plantlets were successfully acclimatized to the greenhouse. This report describes an improving protocol for the micropropagation of carob to respond to the needed efforts to cultivate carob in Egypt.

Keywords: Fabaceae, stem node segment, leaf explants, organogenesis, in vitro propagation


How to Cite

AHMED, M. E.-S. A. E.-N., EL-FADL, R. E.-S. A., HEGAZI, G. A. E.-M., & ELAZIEM, T. M. A. (2021). IMPROVING MICROPROPAGATION PROTOCOL FOR CAROB (Ceratonia siliqua). PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 22(59-60), 84–94. Retrieved from https://ikprress.org/index.php/PCBMB/article/view/7096

Downloads

Download data is not yet available.

References

Sidina M, El Hansali M, Wahid N, Ouatmane A, Boulli A, Haddioui A. Fruitand seed diversity of domesticated carob (Ceratonia siliqua L.) in Morocco. Sci Hortic. 2009;123:110-116.

Girolamo R, Laura D. Evaluation and preservation of genetic resources of carob (Ceratonia siliqua L.) in southern of Italy for pharmaceutical use. Breed Res Aromat Med Plants. 2002;9:367–372.

Azab A. CAROB (Ceratonia siliqua): health, medicine and chemistry. Eur Chem Bull. 2017; 2017(610):456-469.

Romano H, Barros S, Martins-Loucao M. Micropropagation of Mediterranean tree Ceratonia siliqua L. Plant Cell Tiss Org. 2002;68:35-41.

Shahzad A, Akhtar R, Bukhari NA, Perveen K. High incidence regeneration system in Ceratonia siliqua L. articulated with SEM and biochemical analysis during developmental stages. Trees. 2017;31:1149-1163.

Gubbuk H, Gunes E, Ayala-Silva T, Ercisli S. Rapid vegetative propagation method for carob. Not Bot Hort Agrobot Cluj. 2011;39(1):251-254.

Barracosa P, Osorio J, Cravador A. Evaluation of fruit and seed diversity and characterization of carob (Ceratonia siliqua L.) cultivars in Algarve region. Sci Hortic. 2007;114:250–257.

Twaij BM, Jazar ZH, Hasan MN. Trends in the use of tissue culture, applications and future aspects. Int J Plant Biol. 2020;11(1).

Soumare A, Diedhiou AG, Arora NK, Al-Ani LKT, Ngom M, Fall S, Hafidi M, Ouhdouch Y, Kouisni L, Sy MO. Potential role and utilization of plant growth promoting microbes in plant tissue culture. Front Microbiol; 2021.

Custódio L, Martins-Louçao MA, Romano A. Influence of sugars on in vitro rooting and acclimatization of carob tree. Biol Plant. 2004;48:469-472.

Gonçalves S, Correia PJ, Martins-Louçao MA, Romano A. A new medium formulation for in vitro rooting of carob tree based on leaf macronutients concentrations. Biol Plant. 2005;49:277-280.

Naghmouchi S, Khouja ML, Rejeb MN, Boussaid M. Effect of growth regulators and explant origin on in vitro propagation of Ceratonia siliqua L. via cuttings. Biotechnol Agron Soc. 2008;12:251-258.

Naghmouchi S, Khoudja ML, Romero A, Boussaid M. Micropropagation of carob, Ceratonia siliqua L., by apex culture. Acta Bot Gallica: Bot Lett. 2012;159:357-361.

Zouari N, El Mtili N. In vitro propagation of mature carob trees (Ceratonia siliqua L.) from the axillary buds. Am J Plant Sci. 2020;11(9):1369-1382.

Zaen El Deen EM, El-Sayed OM, El-Sayed AI, Hegazi GhA. Studies on carob (Ceratonia siliqua L.) propagation. J Agri Veter Sci. 2014;7(5):31-40.

FAO. Food and Agriculture Organization of the United Nations. FASTST; 2021. Available:http://www.fao.org/faostat/en/#data/QC

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant. 1962;15:473-497.

Duncan DB. Multiple ranges and multiple "F" test. Biometrics. 1955;11:1-42.

Snedecor GW, Cochran WG. Statistical methods. 8th edition. Iowa State University Press, Ames, Iowa, USA; 1990.

Rahimi S, Naderi R, Ghaemaghami SA, Kalatejari S, Farham B. Study on effects of different Plant Growth Regulators types in shoot regeneration and node formation of Sutsuki Azalea (Rhododendron indicum): a commercially important bonsai. 3rd International Conference on Tissue Engineering, ICTE2013, Procedia Eng. 2013;59:240-246.

Parveen S, Shahzad A, Saema S. In vitro plant regeneration system for Cassia siamea Lam., a leguminous tree of economic importance. Agroforest Syst. 2010;80:109-116.

Sharma S, Shahzad A, Anis M. In vitro shoot organogenesis and regeneration of plantlets from nodal explants of Murraya koenigii (L.) Spreng. (Rutaceae), a multipurpose aromatic medicinal plant. Med Aromat Plant Sci Biotechnol. 2010;4:33-36.

Saïdi R, Rahmouni S, El Ansari ZN, Maouni A, Badoc A, Lamarti A. Effect of cytokinins on the micropropagation of carob (Ceratonia siliqua L.) through shoot tip culture. Am J Plant Sci. 2019; 10:1469-1481.

Jana S, Sivanesan I, Jeong BR. Effect of cytokinins on in vitro multiplication of Sophora tonkinensis. Asian Pac J Trop Biomed. 2013;3(7):549–553.

Abahmane L. Date palm micropropagation via organogenesis. In: Jain SM et al. (eds) Date palm biotechnology. Springer, Dordrecht. 2011;69-90.

Jiang B, Yang YG, Guo YM, Guo ZC, Chen YZ. Thidiazuron-induced in vitro shoot organogenesis of the medicinal plant Arnebia euchroma (Royle) Johnst. In Vitro Cell Dev Biol-Plant. 2005; 41:677–681.

Lavakumaran L, Seran TH. Effect of 6-benzyl-aminopurine and thidiazuron on in vitro shoot organogenesis of Aloe vera (L.) Burm. f. Chil J Agric Res. 2014;74:497–501.

Guo B, Abbasi BH, Zeb A, Xu LL, Weil YH. Thidiazuron: A multi-dimensional plant growth regulator. Afr J Biotechnol. 2011;10(45):8984-9000.

Murthy BNS, Murch SJ, Saxena PK. Thidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol-Plant. 1998;34:267.

Mithila J, Hall JC, Victor JMR, Saxena PK. Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.). Plant Cell Rep. 2003;21:408-414.

Arshad M, Silvestre J, Merlina G, Dumat C, Pinelli E, Kallerhof J. Thidiazuron-induced shoot organogenesis from mature leaf explants of scented Pelargonium capitatum cultivars. Plant Cell Tiss Org. 2012;108:315-322.

Ouyang Y, Chen Y, Lü J, da Silva JAT, Zhang X, Ma G. Somatic embryogenesis and enhanced shoot organogenesis in Metabriggsia ovalifolia W. T. Wang. Sci Rep. 2016;6:24662.

Ma GH, Lü JF, Teixeira da Silva JA, Zhang XH, Zhao JT. Somatic embryogenesis and shoot organogenesis from leaf and shoot explants of Ochna integerrima (Lour). Plant Cell Tiss Org. 2011;104:157– 162.

Baskaran P, Kumari A, Van Staden J. In vitro propagation via organogenesis and synthetic seeds of Urginea altissima (L.f.) Baker: a threatened medicinal plant. 3 Biotech. 2018;8(1):18.

De Carvalho PP, Antoniazzi CA, De Faria RB, Carvalho IFD, Rocha D, Silva ML. In vitro organogenesis from root explants of Passiflora miniata Mast., an amazonian species with ornamental potential. Braz Arch Biol Technol. 2019;62:e19170803.

Taha RA, Allam MA, Hassan SAM, Bakr BMM, Hassan MM. Thidiazuron-induced direct organogenesis from immature inflorescence of three date palm cultivars. J Genet Eng Biotechnol. 2021;19:14.

Epstein E, Ludwig-Muller J. Indole 3-butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiol Plant. 1993;88:382–389.

Zhao Y. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol. 2010;61:49-64.

Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H. The main auxin biosynthesis pathway in Arabidopsis. P Natl Acad Sci USA. 2011;108(45):18512-18517.

Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y. Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and yuccas in Arabidopsis. P Natl Acad Sci USA. 2011;108(45):18518-18523.

Rai VK. Role of amino acid in plant responses to stresses. Biol Plantarum J. 2002;45:481-487.

Gehlot A., Arya ID, Arya S, Gupta RK, Tripathi A, Sharma SK. Role of tryptophan on in vitro rooting in microshoots of Azadirachta indica A. Juss (Neem). Adv For Sci Cuiabá. 2014;1(4):101-106.

Bano S, Jabeen M, Rahim F, Ilahi I. Callus induction and regeneration in seed explants of rice (Oryza sativa cv. Swat-II). Pak J Bot. 2005;37(3):829-836.

Shahsari E. Impact of tryptophan and glutamine on the tissue culture of upland rice. Plant Soil Environ. 2011;57(1):7-10.

Talaat IM, Bekheta MA, Mahgoub MH. Physiological response of periwinkle plants (Catharanthus roseus L.) to tryptophan and putrescine. Int J Agric Biol. 2005;7(2):210-213.

Pérez LP, Montesinos YP, Olmedo JG, Rodriguez RB, Sánchez RR, Montenegro ON, Escriba RCR, Daniels D, Gómez-Kosky. Effect of phloroglucinol on rooting and in vitro acclimatization of papaya (Carica papaya L. var. maradol roja). In Vitro Cell Dev Biol-Plant. 2016;52:196-203.

Londe LCN, Vendrame WA, de Oliveira AB, Costa AM. Phloroglucinol is effective for in vitro growth and multiplication of banana shoots and roots. Plant Cell Cult Micropropag. 2017;13: 34-40.

Da Silva JAT, Gulyás A, Magyar-Tábori K, Wang MR, Wang QC, Dobránski J. In vitro tissue culture of apple and other Malus species: Recent advances and applications. Planta. 2019;249:975-1006.

Licea-Moreno RJ, Contreras A, Morales AV, Urban I, Daquinta M, Gomez L. Improved walnut mass micropropagation through the combined use of phloroglucinol and FeEDDHA. Plant Cell Tiss Org. 2015;123:143-154.

Tchouga AO, Deblauwe V, Djabou SAM, Forgione G, Hanna R, Niemenak N. Micropropagation and effect of phloroglucinol on rooting of Diospyros crassiflora Hiern. Hort Science. 2020; 55(4):424-428.

Kim J, Kwon B, Ho T, Park S. Phloroglucinol improves direct rooting of in vitro cultured apple rootstocks M9 and M26. Agronomy. 2020;10(8):1079.