ASSESSMENT OF Cucumis sativus L. ON PHYSIOLOGICAL TRAITS AT DIFFERENT DATES OF SOWING FOR HEAT STRESS

Main Article Content

MUHAMMAD SAJJAD SAEED
KASHIF RASHID
SULTAN MAHMOOD
MUHAMMAD AMIN
ABDUL QAYYUM
BABAR ISLAM
ZARYAB HASSAN
UMAR SABTAIN
SALMAN GHUFFAR

Abstract

In tropical and subtropical regions of the world, where vegetable crops are grown, heat stress is a big problem. Four different varieties of Cucumber (Cucumis sativus) were assessed in 2021 under field circumstances in three sowing dates (15th March, 1st April, and 15th April). The genotypes L3466 indicated as heat tolerant genotypes exhibited the lowest water loss with a transpiration rate of 2.97 mmol m-2 s-1 on the initial sowing date. Poinsett had the highest transpiration rate of 4.38-mmol m-2 s-1 during the third sowing date, followed by Suyo Long with 4.18 mmol m-2 s-1. Heat-sensitive genotypes had increased transpiration rates and lost more water at higher temperatures, resulting in plant withering in third sowing date. The performance of genotypes remained satisfactory at first and second sowing dates.

Keywords:
Vegetable crops, genotypes, subtropical regions, Cucumis sativus

Article Details

How to Cite
SAEED, M. S., RASHID, K., MAHMOOD, S., AMIN, M., QAYYUM, A., ISLAM, B., HASSAN, Z., SABTAIN, U., & GHUFFAR, S. (2021). ASSESSMENT OF Cucumis sativus L. ON PHYSIOLOGICAL TRAITS AT DIFFERENT DATES OF SOWING FOR HEAT STRESS. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 22(57-58), 55-66. Retrieved from https://www.ikprress.org/index.php/PCBMB/article/view/7078
Section
Original Research Article

References

Ali M, Ayyub CM, Hussain Z, Hussain R, Rashid S. Optimization of chitosan level to alleviate the drastic effects of heat stress in cucumber (Cucumis sativus L.). J. Pure Appl. Agri. 2020b;5(1):30-38.

Altaf R, Hussain K, Maryam U, Nawaz K, Munir N, Siddiqi EH. Effect of different levels of drought on growth, morphology and photosynthetic pigments of lady finger (Abelmoschus esculentus). World J. Agric. Sci. 2015;11:198-201. Available:https://doi.org/10.5829/idosi.wjas.2015.11.4.1856

Barrs HD, Weatherley PE. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 1962;24:519-570. Available:https://doi.org/10.1071/BI9620413

Bistgani ZA, Siadat SA, Bakhshandeh A, Pirbalouti AG. Hashemic M. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis celak. Crop J. 2017;10:1-9. Available:https://doi.org/10.1016/j.cj.2017.04.003

Shehata SA, Fawzy ZF, El-Ramady HR. Response of cucumber plants to foliar application of chitosan and yeast under greenhouse conditions. Aus. J. Basic Appl. Sci. 2012;6(4):63-71.

Steel RGD, JH. Torrie DA. Dickey. Principles and procedures of statistics: a biometrical approach. 3rd Ed. McGraw Hill Co, New York, USA; 1997.

Sun A, Guo FQ. Chloroplast retrograde regulation of heat stress responses in plants. Front. Plant Sci. 2016;7:390-398. Available:https://doi.org/ 10.3389/fpls.2016.00398

Tewari AK, Tripathy BC. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol. 1998;177:851- 858. Available:https://doi.org/ 10.1104/pp.117.3.851

Wahid A, Shabbir A. Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycine betaine. Plant Growth Regul. 2005;46:133- 141. Available:https://doi.org/ 10.1007/s10725-005-8379-5

Choudhary RC, Kumaraswamy RV, Kumari S, Pal A, Raliya R, Biswas P, Saharan V. Synthesis, characterization, and application of chitosan nanomaterials loaded with zinc and copper for plant growth and protection. In: Prasad R, Kumar M, Kumar V. (eds.). Nanotechnology. Springer, Singapore 2017;227-247. Available:https://doi.org/10.1007/978-981-10-4573-8_10

Cui K, Shu C, Zhao H, Fan X, Cao J, Jiang W. Preharvest chitosan oligochitosan and salicylic acid treatments enhance phenol metabolism and maintain the postharvest quality of apricots (Prunus armeniaca L.). Sci. Hortic. 2020;267:109334. Available:https://doi.org/10.1016/j.scienta.2020.109334

De-Ollas, C, Arbona, V, Gómez-Cadenas, A. Jasmonic acid interacts with abscisic acid to regulate plant responses to water stress conditions. Plant Signal. Beha. 2015; 10(12):e1078953. Available:https://doi.org/10.1080/15592324.2015.1078953

Ding X, Jiang Y, Hao T, Jin H, Zhang H, He L, Zhou Q, Huang D, Hui D, Yu J. Effects of heat shock on photosynthetic properties, antioxidant enzyme activity, and downy mildew of cucumber (Cucumis sativus L.). Plos One. 2016;11(4):1- 15. Available:https://doi.org/ 10.1371/journal.pone.0152429

Geng W, Z Li, MJ Hassan, Peng Y. Chitosan regulates metabolic balance, polyamine accumulation, and Na+ transport contributing to salt tolerance in creeping bentgrass. BMC Plant Biology. 2020; 20(1):1-15. Available:https://doi: 10.1186/s12870- 020-02720-w

Giri A, Heckathorn S, Mishra S, Krause C. Heat stress decreases levels of nutrient-uptake and-assimilation proteins in tomato roots. Plants. 2017;6:1-15. Available:https://doi.org/10.3390/plants6010006

Helyes L, Nagy Z, Daood H, Pek Z, Lugasi A. The simultaneous effect of heat stress and water supply on total polyphenol content of eggplant. Appl. Ecol. Environ. Res. 2015;13:583-595. Available:https://doi.org/ 10.15666/aeer/1302_583595

Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants. 2019;25(2):313-326. Available:https://doi.org/10.1007/s12298-018-0633-1

Hogy P, Poll C, Marhan, S, Kandeler, E, Fangmeier A. Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chem. 2010;136:1470-1477. Available:https://doi.org/ 10.1016/j.foodchem.2012.09.056

Iriti M, Picchi V, Rossoni M, Gomarasca S, Ludwig N, Garganoand M, Faoro F. Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ. Exp. Bot. 2009;66:493-500. Available:https://doi.org/ 10.1016/j.envexpbot.2009.01.004

Ivanov AG, Velitchkova MY, Allakhverdiev SI, Huner NP. Heat stress- induced effects of photosystem I: an overview of structural and functional responses. Photosynth. Res. 2017;133(1-3):17-30.

Grill,E, Ziegler H. A plants dilemma. Science. 1998;282:252-253. Available:https://doi.org/10.1126/science.282.5387.252

Guo M. Liu JH, Ma X, Luo DX, Gong ZH, Lu MH. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front. Plant Sci. 2016;7:114-119. Available:https://doi.org/ 10.3389/fpls.2016.00114

Hamilton EW, Heckathorn SA, Joshi P, Wang D, Barua D. Interactive effects of elevated CO2 and growth temperature on the tolerance of photosynthesis to acute heat stress in C3 and C4 species. J. Integr. Plant Biol. 2008;50(11):13751-1387. Available:https://doi.org/10.1111/j.1744-7909.2008.00747.x

Dash PK, Chase CA, Agehara S, Zotarelli L. Heat stress mitigation effects of kaolin and s-abscisic acid during the establishment of strawberry plug transplants. Sci. Hortic. 2020;267:109276. Available:https://doi.org/10.1016/j.scienta.2020.109276

Tonhati R, Mello SC, Momesso P, Pedroso RM. L-proline alleviates heat stress of tomato plants grown under protected environment. Sci. Horti. 2020;268:109370. Available:https://doi.org/10.1016/j.scienta.2020.109370 Available:https://doi.org/10.1007/s11120-017-0383-x

Janmohammadi M, Mostafavi H, Kazemi, H, Mahdavinia GR, Sabaghnia N. Effect of chitosan application on the performance of lentil genotypes under rainfed conditions. Acta Technol. Agric. 2014;4:86-90. Available:https://doi.org/10.2478/ata-2014-0020

Kesici M, Gulen H, Ergin S, Turhan E, Ahmet IPEK, Koksal N. Heat- stress tolerance of some strawberry (Fragaria × ananassa) cultivars. Not. Bot. Horti Agrobo. 2013;41(1):244-249. Available:https://doi.org/ 10.15835/nbha4119009

Lee,SL, Choi H, Doo I, Oh K, Choi EJ, Schroeder-Taylor AT, Low PS, Lee Y. Oligogalaturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol. 1999;121:147-152. Available:https://doi.org/ 10.1104/pp.121.1.147

Leung J, Giraudat J. Abscisic acid and signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998;49:199-222. Available:https://doi.org/10.1146/annurev.arplant.49.1.199

Merret R, Carpenier MC, Favory JJ, Picart C, Descombin, J, Bousquet-Antonelli C, Tillard P, Lejay L, Deragon JM, Charng YY. Heat-shock protein HSP101 affects the release of ribosomal protein mRNAs for recovery after heat shock. Plant Physiol. 2017;175(2), 1-24. Available:https://doi.org/ 10.1104/pp.17.00269

Mohamed C, Etienne TV, Yannick KNG. Use of bioactive chitosan and Lippia multiflora essential oil as coatings for maize and sorghum seeds protection. EurAsian J. Bio Sci. 2020;14(1):27-34.

Mohanty P, Allakhverdiev SI, Murata N, Application of low temperature during photoinhibition allows characterization of individual steps in photodamage and repair of photosystem II. Photosynth. Res. 2007; 94(2-3):217- 224. Available:https://doi.org/ 10.1007/s11120- 007-9184-y

Mondal MMA, Malek MA, Puteh AB, Ismail MR, Ashrafuzzaman M, Naher L. Effect of foliar application of chitosan on growth and yield in okra. Aust. J. Crop Sci. 2012;6:918-921.

Naveed S, Aslam M, Maqbool MA, Bano, S, Zaman QU, Ahmad RM. Physiology of high temperature stress tolerance at reproductive stages in maize. J. Anim. Plant Sci. 2014;24(4):1141- 1145.

Nduwimana A, Wei SM. The Effects of high temperature regime on cherry tomato plant growth and development when cultivated in different growing substrates systems. 2017;7:1-17.

Nguyen VT, Nguyen DH, Nguyen HV. Combination effects of calcium chloride and nano-chitosan on the postharvest quality of strawberry (Fragaria x ananassa Duch.). Postharvest Biol. Technol. 2020; 162:111103. Available:https://doi.org/ 10.1016/j.postharvbio.2019.111103

Prasad PVV, Staggenborg SA, Ristic Z. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In response of crops to limited water: understanding and modeling water stress effects on pant growth processes. 2008;301-355.

L.H. Ahuja and S.A. Saseendran (eds). Advances in agricultural systems modeling series 1. ASA-CSSA: Madison, WI, USA. Available:https://doi.org/10.2134/advagricsystmodel1.c11

Goraya GK, Kaur B, Asthir B, Bala S, Kaur G, Farooq M. Rapid injuries of high temperature in plants. J. Plant Biol. 2017; 60:298-305. Available:https://doi.org/10.1007/s12374-016-0365-0

Gommers C. Keep cool and open up: temperature-induced stomatal opening. Plant Physiol. 2020;181:1188-1189. Available:https://doi.org/10.1104/pp.20.00158

Nishiyama Y, Allakhverdiev SI, Murata N. Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth. Res. 2005;84(1-3):1- 7. Available:https://doi.org/ 10.1007/s11120-004-6434-0

Rasul I, Nadeem H, Siddique MH, Atif, RM, Ali MA, Umer A, Rashid F, Afzal M, Abid M, Azeem F. Plants sensory-response mechanisms for salinity and heat stress. J. Ani. Plant Sci. 2017;27(2):490-502.

Rykaczewska K. The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. Am. J. Plant Sci. 2013;4:2386-2393. Available:https://doi.org/ 10.4236/ajps.2013.412295

Salachna P, Zawadzinska A. Effect of chitosan on plant growth, flowering and corms yield of potted freesia. J. Ecol. Eng. 2014;15(3):97-102. Available:https://doi.org/ 10.12911/22998993.1110223

Shah S, Hashmi MS. Chitosan–aloe vera gel coating delays postharvest decay of mango fruit. Horti. Environ. Biotechnol. 2020;7(1):1-7. Available:https://doi.org/ 10.1007/s13580-019-00224-7

Sharif R, Mujtaba M, Ur Rahman M, Shalmani A, Ahmad H, Anwar T, Tianchan D, Wang X. The multifunctional role of chitosan in horticultural crops; a review. Molecules. 2018;23(4):872. Available:https://doi.org/ 10.3390/molecules23040872

Sharkey TD, Zhang R. High temperature effects on electron and proton circuits of photosynthesis. J. Integr. Plant Biol. 2010; 52(8):712-722. Available:https://doi.org/10.1111/j.1744-7909.2010.00975.x

Moya JL, Gomez-Cadenas A, Primo-Millo E, Talon M. Chloride absorption in salt-sensitive carrizo citrange and salt-tolerant cleopatra mandarin citrus rootstocks is linked to water use. J. Exp. Bot. 2003;54: 825-833. Available:https://doi.org/10.1093/jxb/erg064

Nishiyama, Y, Allakhverdiev, S.I, Murata, N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta. 2006; 1757(7), 742-749. Available:https://doi.org/ 10.1016/j.bbabio.2006.05.013

Murata N, Takahashi S, Nishiyama, Y, Allakhverdiev SI. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta. 2007;1767(6): 414-421. Available:https://doi.org/10.1016/j.bbabio.2006.11.019

Salvucci ME, Crafts-Brandner SJ. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Plant Physiol. 2004;120(2):179-186. Available:https://doi.org/ 10.1111/j.0031-9317.2004.0173.x

Camejo D, Rodriguez P, Morales MA, Dellamico JM, Torrecillas A, Alarcon JJ. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 2005;162:281-289. Available:https://doi.org/10.1016/j.jplph.2004.07.014

Shaheen MR, Ayyub CM, Amjad M, Waraich EA. Morpho-physiological evaluation of tomato genotypes under high temperature stress conditions. J. Sci. Food Agri. 2016;96(8):2698-2704. Available:https://doi.org/ 10.1002/jsfa.7388

Ali M, Ayyub CM, Silverman E, Hussain Z, Iqbal S, Ayyub S, Akram B. Antioxidant, lipid peroxidation and cell membrane stability influence yield in Cucumis sativus L. by chitosan application under different sowing times. J. Pure Appl. Agri. 2020a;5(2):59-69.

Zeng D, Luo X. Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Open J. Soil Sci. 2012; 2:282- 288. Available:https://doi.org/ 10.4236/ojss.2012.23034

Mazorra LM, Nunez M, Echerarria E, Coll F, Sanchez-Blanco MJ. Influence of brassinosteriods and antioxidant enzymes activity in tomato under different temperatures. Biol. Plant. 2002;45(4):593-596. Available:https://doi.org/ 10.1023/A:1022390917656

Taiz L, Zeiger E. Stress physiology. Plant Physiol. 2006;4. Available:https://doi.org/10.1093/aob/mcg079

Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007;61(3): 199-223. Available:https://doi.org/10.1016/j.envexpbot.2007.05.011

Bittelli M, Flury M, Campbell GS, Nichols EJ. Reduction of transpiration through foliar application of chitosan. Agric. For. Meteorol. 2001;107:167- 175. Available:https://doi.org/10.1016/S0168-1923(00)00242-2

Wahid, A, Faroq M, Hussain I, Rasheed R, Galani S. Responses and management of heat stress in plants. Plant Growth Regul. 2011;46:133-141. Available:https://doi.org/10.1007/978-1-4614-0815-4_6