ROLE OF GENETIC, EPIGENETIC AND STRESS ADAPTATION FACTOR IN VIRULENCE OF Aspergillus-AN UNTOLD STORY

Main Article Content

BANHISHIKHA DATTA
NAHID AKHTAR
M. AMIN-UL MANNAN

Abstract

Aspergillus spp. is a fungal opportunist pathogen found ubiquitously in nature. It causes a wide array of diseases in plants, animals, and humans. It poses threat to humans for causing mild to severe infections. According to the Centre for Disease Control and Prevention (CDC), worldwide 4.8 million suffer from Allergic bronchopulmonary aspergillosis (ABPA) and another 1.2 million suffer from chronic pulmonary aspergillosis (CPA). Systemic invasive aspergillosis is a life-threatening disease mostly affecting immunocompromised patients with a mortality rate of 25-59%. Most of these immunocompromised patients are having comorbidities like asthma, haematological malignancies, or stem cell therapy. Aspergillus spp. is having the right genetic arsenal, necessary structural component, and secrete secondary metabolite to thrive and reproduce in the most hostile environments. Various virulence factors like adhesion proteins, phospholipase, protease, reactive oxygen neutralizing enzymes, mycotoxins contribute to its success. In this review, we summarized the recently discovered genetic, epigenetic, and stress adaptation factors as pathogenic contributors of Aspergillus. We have described the nutrient-sensing transcription factors, histone acetyltransferase, and kinases are associated with cell wall damage, oxidative stress, and drug resistance. These signalling molecules are associated with the dispersion of conidia, sclerotia, and aflatoxin production which are important determinants of its virulence.

Keywords:
Aspergillosis, pulmonary diseases, virulent genes, epigenetics, environmental stress pathways.

Article Details

How to Cite
DATTA, B., AKHTAR, N., & MANNAN, M. A.-U. (2021). ROLE OF GENETIC, EPIGENETIC AND STRESS ADAPTATION FACTOR IN VIRULENCE OF Aspergillus-AN UNTOLD STORY. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 22(51-52), 30-45. Retrieved from https://www.ikprress.org/index.php/PCBMB/article/view/6978
Section
Review Article

References

Kwon-Chung KJ, Sugui JA. Aspergillus fumigatus-what makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 2013;9(12):1-4.
DOI:10.1371/journal.ppat.1003743

Pitt JI. The Current role of aspergillus and penicillium in human and animal health. Med Mycol. 1994;32(S1):17-32.
DOI:10.1080/02681219480000701

Heitman J. Microbial pathogens in the fungal kingdom. Fungal Biol Rev. 2011;25(1):48-60. DOI:10.1016/j.fbr.2011.01.003

Benkerroum. Aflatoxins: Producing-molds, structure, health issues and incidence in Southeast Asian and Sub-Saharan African Countries. Int J Environ Res Public Health. 2020;17(4):1215. DOI:10.3390/ijerph17041215

Leal SM, Cowden S, Hsia Y-C, Ghannoum MA, Momany M, Pearlman E. Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis. Levitz SM, ed. PLoS Pathog. 2010;6(7):e1000976. DOI:10.1371/journal.ppat.1000976

Denning DW. Invasive aspergillosis. Clin Infect Dis. 1998;26(4):781-805.

DOI:10.1086/513943

Balajee SA. Aspergillus terreus complex. Med Mycol. 2009;47(SUPPL. 1). DOI:10.1080/13693780802562092

Varga J, Samson RA. Aspergillus in the Genomic Era. Wageningen Academic Publishers; 2008.
DOI:10.3920/978-90-8686-635-9

Latgé JP. The pathobiology of Aspergillus fumigatus. Trends Microbiol. 2001;9(8):382-389.
DOI:10.1016/S0966-842X(01)02104-7

Latgé JP. Aspergillus fumigatus and Aspergillosis. Clin Microbiol Rev. 1999;12(2):310-350. DOI:10.1128/cmr.12.2.310

Greub G, Bille J. Aspergillus species isolated from clinical specimens: Suggested clinical and microbiogical criteria to determine significance. Clin Microbiol Infect. 1998;4(12):710-716.

DOI:10.1111/j.1469-0691.1998.tb00656.x

Hedayati MT, Mohseni-Bandpi A, Moradi S. A survey on the pathogenic fungi in soil samples of potted plants from Sari hospitals, Iran. J Hosp Infect. 2004;58(1):59-62. DOI:10.1016/j.jhin.2004.04.011

Micheli PA. Nova plantarum genera iuxta tournefortii methodum disposita quibus plantae MDCCCC recensentur. Florence: Bernardo Paperini, 1729. . Accessed September 12, 2020.

Available:https://www.christies.com/lotfinder/Lot/micheli-pier-antonio-1679-1737-nova-plantarum-5067950-details.aspx

Bennett JH. On the parasitic vegetable structures found growing in living animals. Transactions of the Royal Society of Edinburgh. In: Vol 15. ; 1842:277-279.

Gairdner WT. Clinical retrospect of cases treated during the session 1855—6 (November to March); Including Remarks upon the More Important Fatal Cases, and upon the Cases of Inflammation of the Lungs Treated during That Period. Edinb Med J. 1856;1(11):969.

Accessed September 12, 2020. Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307494/

Virchow R. Beiträge zur Lehre von den beim Menschen vorkommenden pflanzlichen Parasiten. Arch für Pathol Anat und Physiol und für Klin Med. 1856;9(4):557-593. DOI:10.1007/BF01879405

Cawley EP. Aspergillosis and the aspergilli: Report of a Unique Case of the Disease. Arch Intern Med. 1947;80(4):423-434. DOI:10.1001/archinte.1947.00220160002001

Hinson KFW, Moon AJ, Plummer NS. Broncho-pulmonary Aspergillosis : A Review and a Report of Eight New Cases. Thorax. 1952;7(4):317-333.
DOI:10.1136/thx.7.4.317

Thom C CM. The Aspergilli. Nature. 1927;119(2993):386-386. DOI:10.1038/119386b0

Thom C RK. “A manual of the Aspergilli.” Baltimore: Williams and Wilkins, 1945.

Abraham J, Mukherjee P, Bose D, Dutta A. Utilization of monocrotophos by Aspergillus sojae strain JPDA1 isolated from sugarcane fields of Vellore district in India. Res J Pharm Technol. 2016;9(12):1451-1456. DOI:10.5958/0974-360x.2016.00437.6

Josphine A, Senthil Kumar G, Madhanraj P, Panneerselvam A. Antibacterial Activity of Aspergillus oryzae against some Human Pathogens. Res J Pharmacol Pharmacodyn. 2011;3(5):250-252.

Accessed December 13, 2020. Available:https://www.indianjournals.com/ijor.aspx?target=ijor:rjppd&volume=3&issue=5&article=006

Chatterjee A, Abraham J. Biosorption of copper using Oryza sativa and Aspergillus oryzae. Res J Pharm Technol. 2016;9(6):664-670.

DOI:10.5958/0974-360X.2016.00125.6

Ganguly S. Effect of ATPase/ATP Synthetase inhibitors on As(III) biosorption by Aspergillus niger X300. Res J Pharmacol Pharmacodyn. 2013;5(4):205-206. Accessed December 13, 2020. Available:http://www.indianjournals.com/ijor.Aspx?target=ijor:rjppd&volume=5&issue=4&article=001

F.Shahverdi, S. Avaz Moghadam, M.Ahmadi, M.A. Faramarzi. Biosorption of Nickel (II) from Aqueous Solution on Immobilized Fungal Biomass of Aspergillus awamori. 2014;7(6):570-575. Accessed December 13, 2020. Available:https://www.indianjournals.com/ijor.aspx?target=ijor:ajrc&volume=7&issue=6&article=005

Tara Chand, Fanish K. Pandey, Shruti Dhingra, Manoj K. Sharma. Production of Industrially Significant Enzymes from Bio-Wastes Using Aspergillus niger by Solid State Fermentation-Indian Journals. Res J Sci Technol. 2014;6(1):16-19.

Accessed December 13, 2020. Available:http://www.indianjournals.com/ijor.Aspx?target=ijor:rjst&volume=6&issue=1&article=004

Tara Chand, Fanish K. Pandey, Manoj K. Sharma. Pectinase enzyme production from orange peels by solid state fermentation technology using Aspergillus niger. Res J Sci Technol. 2014;6(4):194-198.

Accessed December 13, 2020. Available:https://rjstonline.com/HTMLPaper.aspx?Journal=Research Journal of Science and Technology;PID=2014-6-4-3

V Sreenivasulu, KN Jayaveera, P Mallikarjuna Rao. Solid-State Fermentation for the Production of L-Asparaginase by Aspergillus Sp. Res J Pharmacogn Phytochem. 2009;1(1):21-25.

Accessed December 13, 2020. Available:http://rjpponline.org/search.aspx?key=P Mallikarjuna Rao

Muthukumaran PM, Alamelumangai M. Mathumitha. Decolorization and degradation of reactive dyes by Aspergillus niger. Res J Eng Technol. 2013;4(4):235-238.
Accessed December 13, 2020. Available:https://www.indianjournals.com/ijor.aspx?target=ijor:rjet&volume=4&issue=4&article=021

Adline Princy S, Karthik S, Malini R. Biosynthesis of Silver Nanoparticles by Aspergillus niger. 2011;4(1).
Accessed December 13, 2020. Available:https://www.researchgate.net/publication/323103917_Biosynthesis_of_Silver_Nanoparticles_by_Aspergillus_niger

Anaissie EJ, Stratton SL, Dignani MC, et al. Pathogenic aspergillus species recovered from a hospital water system: A 3-Year prospective study. Clin Infect Dis. 2002;34(6):780-789.

DOI:10.1086/338958

Barnes AJ, Denning DW. Aspergilli - significance as pathogens. Rev Med Microbiol. 1993;4(3):176-180.

Viscoli C, Machetti M, Gazzola P, et al. Aspergillus Galactomannan Antigen in the Cerebrospinal Fluid of Bone Marrow Transplant Recipients with Probable Cerebral Aspergillosis. J Clin Microbiol. 2002;40(4):1496-1499. DOI:10.1128/JCM.40.4.1496-1499.2002

Noble WC, Clayton YM. Fungi in the air of hospital wards. J Gen Microbiol. 1963;32(3):397-402.
DOI:10.1099/00221287-32-3-397

Walsh TJ, Dixon DM. Nosocomial aspergillosis: Environmental microbiology, hospital epidemiology, diagnosis and treatment. Eur J Epidemiol. 1989;5(2):131-142.

DOI:10.1007/BF00156818

Groll AH, Shah PM, Mentzel C, Schneider M, Just-Nuebling G, Huebner K. Trends in the postmortem epidemiology of invasive fungal infections at a University Hospital. J Infect. 1996;33(1):23-32.

DOI:10.1016/S0163-4453(96)92700-0

Anaissie EJ, Costa SF. Nosocomial aspergillosis is waterborne. Clin Infect Dis. 2001;33(9):1546-1548. DOI:10.1086/322967

Warris A, Gaustad P, Meis JFGM, Voss A, Verweij PE, Abrahamsen TG. Recovery of filamentous fungi from water in a paediatric bone marrow transplantation unit. J Hosp Infect. 2001;47(2):143-148.
DOI:10.1053/jhin.2000.0876

Arvanitidou M, Kanellou K, Constantinides TC, Katsouyannopoulos V. The occurrence of fungi in hospital and community potable waters. Lett Appl Microbiol. 1999;29(2):81-84.
DOI:10.1046/j.1365-2672.1999.00583.x

Lass-Flörl C, Grif K, Kontoyiannis DP. Molecular typing of Aspergillus terreus isolates collected in Houston, Texas, and Innsbruck, Austria: Evidence of great genetic diversity. J Clin Microbiol. 2007;45(8):2686-2690. DOI:10.1128/JCM.00917-07

Denning DW.Aspergillusspecies. In: Mandell GL BJD eds. Principles and practice of infectious diseases. In: Principles and Practice of Infectious Diseases 5th Edition. 2000;2:2674- 2684.

Wiggins J, Clark TJH, Corrin B. Chronic necrotising pneumonia caused by Aspergillus niger. Thorax. 1989;44(5):440-441.

DOI:10.1136/thx.44.5.440

Luce JM, Ostenson RC, Springmeyer SC, Hudson LD. Invasive aspergillosis presenting as pericarditis and cardiac tamponade. Chest. 1979;76(6):703-705. DOI:10.1378/chest.76.6.703

Kreiss Y, Vered Z, Keller N, Kochva I, Sidi Y, Gur H. Aspergillus niger endocarditis in an immunocompetent patient: An unusual course. Postgrad Med J. 2000;76(892):105-106.
DOI:10.1136/pmj.76.892.105

Papagianni A, Kelesidis A, Papadimitriou M, Bibashi E, Antoniadou R. Peritonitis due to Aspergillus niger in a patient on continuous am-bulatory peritoneal dialysis shortly after kidney graft rejection. Nephrol Dial Transplant. 1993;8(2):185-187. DOI:10.1093/oxfordjournals.ndt.a092416

Gercovich FG, Richman SP, Rodriguez V, Luna M, McCredie KB, Bodey GP. Successful control of systemic aspergillus niger infections in two patients with acute leukemia. Cancer. 1975;36(6):2271-2276. DOI:10.1002/cncr.2820360945

Wald A, Leisenring W, Van Burik JA, Bowden RA. Epidemiology of Aspergillus infections in a large cohort of patients undergoing bone marrow transplantation. J Infect Dis. 1997;175(6):1459-1466. DOI:10.1086/516480

Schaffner A, Douglas H, Braude A. Selective protection against conidia by mononuclear and against mycelia by polymorphonuclear phagocytes in resistance to aspergillus. Observations on these two lines of defense in vivo and in vitro with human and mouse phagocytes. J Clin Invest. 1982;69(3):617-631. DOI:10.1172/JCI110489

Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, Jousson O. Secreted proteases from pathogenic fungi. Int J Med Microbiol. 2002;292(5-6):405-419. DOI:10.1078/1438-4221-00223

International Agency for Research on Cancer. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines, and Mycotoxins. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans. Vol Vol. 56. Lyon: International Agency for Research on Cancer; 1993.

Wojnowski L, Turner PC, Pedersen B, et al. Increased levels of aflatoxin-albumin adducts are associated with CYP3A5 polymorphisms in The Gambia, West Africa. Pharmacogenetics. 2004; 14(10):691-700.
DOI:10.1097/00008571-200410000-00007

Zhang Y, Chen Y, Ahsan H, et al. Silencing of glutathione S-transferase P1 by promoter hypermethylation and its relationship to environmental chemical carcinogens in hepatocellular carcinoma. Cancer Lett. 2005;221(2):135-143. DOI:10.1016/j.canlet.2004.08.028

Suganthini Krishnan EKM and PHC. Aspergillus flavus: an emerging non-fumigatus Aspergillus species of significance. Mycoses. 2009;52(3):206-222.
DOI:10.1111/j.1439-0507.2008.01642.x

Zhu LY, Nguyen CH, Sato T, Takeuchi M. Analysis of secreted proteins during conidial germination of Aspergillus oryzae RIB40. Biosci Biotechnol Biochem. 2004;68(12):2607-2612. DOI:10.1271/bbb.68.2607

Vankuyk PA, Cheetham BF, Katz ME. Analysis of two aspergillus nidulans genes encoding extracellular proteases. Fungal Genet Biol. 2000;29(3):201-210. DOI:10.1006/fgbi.2000.1195

Dannaoui E, Badali H, Homa M, et al. Characterization of Aspergillus tamarii Strains From Human Keratomycoses: Molecular Identification, Antifungal Susceptibility Patterns and Cyclopiazonic Acid Producing Abilities. Published online 2019.

DOI:10.3389/fmicb.2019.02249

Tekaia F, Latgé JP. Aspergillus fumigatus: Saprophyte or pathogen? Curr Opin Microbiol. 2005;8(4):385-392.

DOI:10.1016/j.mib.2005.06.017

Festa RA, Thiele DJ. Copper: An essential metal in biology. Curr Biol. 2011; 21(21):R877-R883. DOI:10.1016/j.cub.2011.09.040

Cai Z, Du W, Zeng Q, Long N, Dai C, Lu L. Cu-sensing transcription factor Mac1 coordinates with the Ctr transporter family to regulate Cu acquisition and virulence in Aspergillus fumigatus. Fungal Genet Biol. 2017;107:31-43. DOI:10.1016/j.fgb.2017.08.003

Park YS, Kang S, Seo H, Yun CW. A copper transcription factor, AfMac1, regulates both iron and copper homeostasis in the opportunistic fungal pathogen Aspergillus fumigatus. Biochem J. 2018;475(17):2831-2845. DOI:10.1042/BCJ20180399

Kusuya Y, Hagiwara D, Sakai K, Yaguchi T, Gonoi T, Takahashi H. Transcription factor Afmac1 controls copper import machinery in Aspergillus fumigatus. Curr Genet. 2017;63(4):777-789.

DOI:10.1007/s00294-017-0681-z

Wiemann P, Perevitsky A, Lim FY, et al. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense. Cell Rep. 2017;19(5):1008-1021. DOI:10.1016/j.celrep.2017.04.019

Zhuang Z, Lohmar JM, Satterlee T, Cary JW, Calvo AM. The master transcription factor mtfA governs aflatoxin production, morphological development and pathogenicity in the fungus Aspergillus flavus. Toxins (Basel). 2016;8(1). DOI:10.3390/toxins8010029

Ramamoorthy V, Dhingra S, Kincaid A, Shantappa S, Feng X, Calvo AM. The Putative C2H2 Transcription Factor MtfA Is a Novel Regulator of Secondary Metabolism and Morphogenesis in Aspergillus nidulans. PLoS One. 2013;8(9). DOI:10.1371/journal.pone.0074122

Smith TD, Calvo AM. The mtfA transcription factor gene controls morphogenesis, gliotoxin production, and virulence in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot Cell. 2014;13(6):766-775.
DOI:10.1128/EC.00075-14

Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol. 2003;15(2):172-183.
DOI:10.1016/S0955-0674(03)00013-9

Heintzman ND, Hon GC, Hawkins RD, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009;459(7243): 108-112.
DOI:10.1038/nature07829

Lan H, Sun R, Fan K, et al. The Aspergillus flavus histone acetyltransferase aflgcne regulates morphogenesis, aflatoxin biosynthesis, and pathogenicity. Front Microbiol. 2016;7(AUG):1324.

DOI:10.3389/fmicb.2016.01324

Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014;15(8):536-550. DOI:10.1038/nrm3841

Spedale G, Timmers HTM, Pijnappel WWMP. ATAC-king the complexity of SAGA during evolution. Genes Dev. 2012;26(6):527-541. DOI:10.1101/gad.184705.111

Cánovas D, Marcos AT, Gacek A, et al. The histone acetyltransferase GcnE (GCN5) plays a central role in the regulation of Aspergillus asexual development. Genetics. 2014;197(4):1175-1189.
DOI:10.1534/genetics.114.165688

Mahanti N, Bhatnagar D, Cary JW, Joubran J, Linz JE. Structure and function of fas-1A, a gene encoding a putative fatty acid synthetase directly involved in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol. 1996;62(1):191-195.
DOI:10.1128/aem.62.1.191-195.1996

Abate G, Bastonini E, Braun KA, Verdone L, Young ET, Caserta M. Snf1/AMPK regulates Gcn5 occupancy, H3 acetylation and chromatin remodelling at S. cerevisiae ADY2 promoter. Biochim Biophys Acta - Gene Regul Mech. 2012;1819(5):419-427. DOI:10.1016/j.bbagrm.2012.01.009

Roze LV, Arthur AE, Hong S-Y, Chanda A, Linz JE. The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster. Mol Microbiol. 2007;66(3):713-726.
DOI:10.1111/j.1365-2958.2007.05952.x

Nützmann HW, Reyes-Dominguez Y, Scherlach K, et al. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci U S A. 2011;108(34):14282-14287.
DOI:10.1073/pnas.1103523108

Zhi QQ, Li JY, Liu QY, He ZM. A cytosine methyltransferase ortholog dmtA is involved in the sensitivity of Aspergillus flavus to environmental stresses. Fungal Biol. 2017;121(5):501-514.
DOI:10.1016/j.funbio.2017.02.001

Du C, Sarfati J, Latge J-P, Calderone R. The role of the sakA (Hog1) and tcsB (sln1) genes in the oxidant adaptation of Aspergillus fumigatus. Med Mycol. 2006;44(3):211-218. DOI:10.1080/13693780500338886

Philippe B, Ibrahim-Granet O, Prévost MC, et al. Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun. 2003;71(6):3034-3042.
DOI:10.1128/IAI.71.6.3034-3042.2003

Bork P, Jensen LJ, Von Mering C, Ramani AK, Lee I, Marcotte EM. Protein interaction networks from yeast to human. Curr Opin Struct Biol. 2004;14(3):292-299. DOI:10.1016/j.sbi.2004.05.003

Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, et al. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci U S A. 2013;110(12):4840-4845. DOI:10.1073/pnas.1302265110

Aguirre J, Hansberg W, Navarro R. Fungal responses to reactive oxygen species. Med Mycol. 2006;44(s1):101-107.
DOI:10.1080/13693780600900080

Juvvadi PR, Cole DC, Falloon K, et al. Kin1 kinase localizes at the hyphal septum and is dephosphorylated by calcineurin but is dispensable for septation and virulence in the human pathogen Aspergillus fumigatus. Biochem Biophys Res Commun. 2018;505(3):740-746. DOI:10.1016/j.bbrc.2018.09.186

Cadou A, Couturier A, Le Goff C, Xie L, Paulson JR, Le Goff X. The Kin1 kinase and the calcineurin phosphatase cooperate to link actin ring assembly and septum synthesis in fission yeast. Biol Cell. 2013;105(3):129-148. DOI:10.1111/boc.201200042

Steinbach WJ, Cramer RA, Perfect BZ, et al. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot Cell. 2006;5(7):1091-1103. DOI:10.1128/EC.00139-06

Kawasaki L, Sánchez O, Shiozaki K, Aguirre J. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol. 2002;45(4):1153-1163. DOI:10.1046/j.1365-2958.2002.03087.x

Turrà D, Segorbe D, Di Pietro A. Protein kinases in plant-pathogenic Fungi: Conserved regulators of infection. Annu Rev Phytopathol. 2014;52:267-288. DOI:10.1146/annurev-phyto-102313-050143

Xue T, Nguyen CK, Romans A, May GS. A mitogen-activated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. Eukaryot Cell. 2004;3(2):557-560.
DOI:10.1128/EC.3.2.557-560.2004

Manfiolli AO, Mattos EC, de Assis LJ, et al. Aspergillus fumigatus High Osmolarity Glycerol Mitogen Activated Protein Kinases SakA and MpkC Physically Interact During Osmotic and Cell Wall Stresses. Front Microbiol. 2019; 10(MAY):918. DOI:10.3389/fmicb.2019.00918