THE INFLUENCE OF ARBUSCULAR MYCORRHIZAL COLONISATION ON KEY GROWTH PARAMETERS OF FIVE CITRUS ROOTSTOCK CULTIVARS UNDER SALT STRESS

Main Article Content

MANAL BOURAZZA
OUIAM CHETTO
ABDELHAK TALHA
ALI FARIH
ALLAL DOUIRA
HAMID BENYAHIA

Abstract

A study was conducted to compare the efficacy of mycorrhization on five citrus rootstocks (Poncirus trifoliata, rangpur Lime, Citrus macrophyla, carrizo Citrange and Mandarin cleopatre). The plants were mycorrhized by placing the inoculum (soil+roots) next to the roots. The plants were placed in a greenhouse and irrigated twice a week with a nutrient solution (Hoagland solution). Salt stress was applied by supplementing the nutrient solution with NaCl at three different concentrations (0g/l, 2g/l and 5g/l) for seven weeks. Irrigations were performed twice a week. The experimental setup used was a split-plot. After two months of growth, the plants were harvested and subjected to various analyses to determine biomass (fresh and dry weights), root and plant mass, soluble sugars in the leaves, proline and total chlorophyll. The results obtained show that the response of the rootstocks varies according to the mycorrhization and the salt concentration used. Mycorrhization improved growth in non-stressed plants (with the higher value detected  in Citrus macrophyla plants with 36.93cm and 2.20g respectively in linear and root biomass growth). This growth drops significantly in the case of salt stress but remains comparatively higher than that recorded in non-infected plants (linear growth in Mandarin cleopatre in non-infected plant is 10.26cm for 13.93 in infected ones). The comparison of the different parameters measured (morphological and biochemical) allowed us to conclude that the rootstocks differed significantly at 5% under the different NaCl treatments and mycorrhization.

Keywords:
Citrus, rootstock, salinity, growth, sodium chloride, tolerance, proline, mycorrhization

Article Details

How to Cite
BOURAZZA, M., CHETTO, O., TALHA, A., FARIH, A., DOUIRA, A., & BENYAHIA, H. (2021). THE INFLUENCE OF ARBUSCULAR MYCORRHIZAL COLONISATION ON KEY GROWTH PARAMETERS OF FIVE CITRUS ROOTSTOCK CULTIVARS UNDER SALT STRESS. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 22(41-42), 125-138. Retrieved from https://www.ikprress.org/index.php/PCBMB/article/view/6694
Section
Original Research Article

References

Département de l’agriculture - Ministère de l’Agriculture, de la Pêche Maritime, du Développement Rural et des Eaux et Forêts. Available:https://www.agriculture.gov.ma/ (Consulté le mai 22, 2021)

Evelin H, Devi TS, Gupta S, Kapoor R. Mitigation of Salinity Stress in Plants by Arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front. Plant Sci. 2019;10:470.
DOI: 10.3389/fpls.2019.00470

Fadli A, Chetto O, Talha A, Benkirane R, Morillon R, Benyahia H. Characterization in greenhouse conditions of two salt tolerant citrumelo (Citrus paradisi Macf. x Poncirus trifoliata (L.) Raf.) cultivars. 2014;12.

Storey R, Walker RR. Citrus and salinity. Scientia Horticulturae. 1998;78(1‑4): 39‑81.
DOI: 10.1016/S0304-4238(98)00190-3.

Aparicio-Durán L, Hervalejo A, Calero-Velázquez R, Arjona-López JM, Arenas-Arenas FJ. Salinity effect on plant physiological and nutritional parameters of new huanglongbing disease-tolerant citrus rootstocks. Agronomy. 2021;11(4):653. DOI: 10.3390/agronomy11040653.

Aouad BAE, Fadli A, Aderdour T, Talha A, Benyahia H. Investigating salt tolerance in citrus rootstocks under greenhouse conditions using growth and biochemical indicators. 2015;3(4):12.

Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza. 2010;20(8):519‑530.
DOI: 10.1007/s00572-010-0333-3

Lone R, Shuab R, Khan S, Ahmad J, Koul KK. Arbuscular Mycorrhizal Fungi for Sustainable Agriculture. In Probiotics and Plant Health, V. Kumar, M. Kumar, S. Sharma, et R. Prasad, Éd. Singapore: Springer Singapore. 2017;553‑577.
DOI: 10.1007/978-981-10-3473-2_25.

Hadian-Deljou M, Esna-Ashari M, Mirzaie-asl A. Alleviation of salt stress and expression of stress-responsive gene through the symbiosis of arbuscular mycorrhizal fungi with sour orange seedlings. Scientia Horticulturae. 2020;268: 109373.
DOI: 10.1016/j.scienta.2020.109373.

Smith SE, Read DJ. Mycorrhizal symbiosis. Academic Press; 2010.

Mosse B. Advances in the Study of Vesicular-Arbuscular Mycorrhiza. Annu. Rev. Phytopathol. 1973;11(1):171‑196. DOI:10.1146/annurev.py.11.090173.001131.

Priou L. Multiplication des mycorhizes arbusculaires en milieu liquide et solide afin d’améliorer la formulation de biofertilisants. 2014;45.

Rhodes LH, Gerdemann JW. Hyphal translocation and uptake of sulfur by vesicular-arbuscular mycorrhizae of onion. Soil Biology and Biochemistry. 1978;10(5): 355‑360.
DOI: 10.1016/0038-0717(78)90057-3.

Berch SM, Koske RE. Glomus pansihalos, a new species in the endogonaceae, zygomycetes. Mycologia. 1986;78(5): 832‑836.

DOI: 10.1080/00275514.1986.12025329.

Schenck NC, Smith GS. Additional new and unreported species of mycorrhizal fungi (Endogonaceae) from Florida. Mycologia. 1982;74(1):77.
DOI: 10.2307/3792631.

Pérez Y, Schenck NC. A unique code for each species of va mycorrhizal fungi. Mycologia. 1990;82(2):256‑260.
DOI: 10.1080/00275514.1990.12025872.

Walker C. Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomales)- a possible way forward. Agronomie. 1992;12(10):887‑897.
DOI: 10.1051/agro:19921026.

Dalpé Y. Gigaspora margarita. Canadian Journal of Plant Pathology. 1994;16(3): 229‑230.
DOI: 10.1080/07060669409500759.

Srivastava D, Kapoor R, Srivastava SK, Mukerji KG. Vesicular arbuscular mycorrhiza — an overview, in Concepts in Mycorrhizal Research, K. G. Mukerji, Éd. Dordrecht: Springer Netherlands. 1996; 1‑39.
DOI: 10.1007/978-94-017-1124-1_1.

Home | INVAM International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi | West Virginia University ».
Available:https://invam.wvu.edu/
(Consulté le mai 22, 2021)

Blaker NS. The role of salinity in the development of phytophthora root rot of citrus. Phytopathology. 1986;76(10):970. DOI: 10.1094/Phyto-76-970.

Hoagland DR. The water-culture method for growing plants without soil. 1950;32.

Beniken L, et al. Évaluation de la résistance de dix porte-greffes d’agrumes résistants à la tristeza vis-à-vis du déficit hydrique. Fruits. 2011;66(6):373‑384.
DOI: 10.1051/fruits/2011053.

Monneveux P, Nemmar M. Contribution à l’étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.) : étude de l’accumulation de la proline au cours du cycle de développement. Agronomie. 1986; 6(6):583‑590.
DOI: 10.1051/agro:19860611.

Heinisch O, Steel RGD, Torrie JH. Principles and procedures of statistics. (With special reference to the biological sciences.) McGraw-Hill Book Company, New York, Toronto, London 1960, 481 S., 15 Abb.; 81 s 6 d », Biom. J. 1962;4(3): 207‑208.
DOI: 10.1002/bimj.19620040313.

Oehl F, Sieverding E, Ineichen K, Ris E, Boller T, Wiemken A. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytologist. 2005;165(1):273‑ 283.
DOI: 10.1111/j.1469-8137.2004.01235.x.

Abdel Latef AAH, Miransari M. The role of arbuscular mycorrhizal fungi in alleviation of salt stress, in Use of Microbes for the Alleviation of Soil Stresses, M. Miransari, Éd. New York, NY: Springer New York. 2014;23‑38.
DOI: 10.1007/978-1-4939-0721-2_2.

Abdel Latef AAH. RETRACTED ARTICLE: Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza. 2011;21(6):495‑503.
DOI: 10.1007/s00572-010-0360-0.

Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae. 2009; 121(1):1‑6.
DOI: 10.1016/j.scienta.2009.01.001.

Murkute AA, Sharma S, Singh SK. Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hort. Sci. (Prague). 2011;33(2): 70‑76.
DOI: 10.17221/3742-HORTSCI.

Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 2008;18(6‑7):287‑296.
DOI: 10.1007/s00572-008-0180-7.

Hajiboland R. Role of arbuscular mycorrhiza in amelioration of salinity, in Salt Stress in Plants, P. Ahmad, M. M. Azooz, et M. N. V. Prasad, Éd. New York, NY: Springer New York. 2013;301‑ 354.
DOI: 10.1007/978-1-4614-6108-1_13.

Giri B, Kapoor R, Mukerji KG. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils. 2003;38(3):170‑175.
DOI: 10.1007/s00374-003-0636-z.

Zuccarini P, Okurowska P. Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. Journal of Plant Nutrition. 2008;31(3):497‑513.
DOI: 10.1080/01904160801895027.

Hassanein RA, Hassanein AA, Haider AS, Hashem HA. Improving salt tolerance of Zea mays L. Plants by Presoaking Their Grains in Glycine Betaine. 2009;16.

Sharifi M, Ghorbanli M, Ebrahimzadeh H. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology. 2007;164(9):1144‑1151.
DOI: 10.1016/j.jplph.2006.06.016.

Talaat NB, Shawky BT. Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environmental and Experimental Botany. 2014;98:20-31.
DOI: 10.1016/j.envexpbot.2013.10.005.