VIRULENCE FACTORS CORRELATION AMONG AmpC AND ESBL PRODUCING Klebsiella pneumoniae CLINICAL ISOLATES

Main Article Content

B. ADITI PRIYADARSHINI
KRISHNAN MAHALAKSHMI

Abstract

Introduction: Multi drug resistant Klebsiella pneumoniae is a major threat to public health. AmpC beta lactamases and extended spectrum beta lactamases (ESBL) producing Klebsiella pneumoniae isolates hydrolyze the commonly used cephalosporin group of antibiotics rendering them ineffective in curbing the infections. Capsule lipopolysaccharides, fimbriae, siderophores and adhesions are major virulence factors in pathogenicity of K. pneumoniae.  Our study aimed at evaluating the relationship between virulence and antibiotic resistance in the K. pneumoniae clinical isolates.

Materials and Methods: A total of 234 K. pneumoniae isolates were collected from a tertiary care hospital. Antibiotic susceptibility testing was performed by Vitek 2 systems version 7.0. Phenotypic screening for AmpCs and ESBLs was done using discs of cefotetan and ceftriaxone with and without phenylboronic acid. A total of eight virulence genes (uge, iutA, wabG, ycfM, fimH, entB, mrkD and iroN) were detected by multiplex PCR.

Results:  Out of 87 K. pneumoniae clinical isolates 24 (27.5%) were ESBL producers, 14 (16.09%) were AmpC producers and 19 (21.8%) isolates produced both ESBL and AmpC. Uge and mrkD were the two most common virulence genes detected in our study. There were no significant correlation between antibiotic resistant enzymes production and the presence of virulence genes viz., uge, iutA, wabG, ycfM, fimH, entB, mrkD, iroN.

Conclusion: The current study reveals uge and mrkD as prime virulence genes in K. pneumoniae isolates. Significant difference was not obseved in virulence genes expression between beta lactamase producers and non producers.

Keywords:
AmpC, extended spectrum beta lactamases, mrkD, uge, virulence.

Article Details

How to Cite
PRIYADARSHINI, B. A., & MAHALAKSHMI, K. (2020). VIRULENCE FACTORS CORRELATION AMONG AmpC AND ESBL PRODUCING Klebsiella pneumoniae CLINICAL ISOLATES. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 21(5-6), 59-64. Retrieved from https://www.ikprress.org/index.php/PCBMB/article/view/4965
Section
Original Research Article

References

Gharrah MM, Mostafa El-Mahdy A, Barwa RF. Association between virulence factors and extended spectrum beta-lactamase producing Klebsiella pneumoniae compared to nonproducing isolates. Inter-disciplinary Perspectives on Infectious Diseases. 2017;7279830.
DOI: 10.1155/2017/7279830

Gajdács, Ábrók, Lázár, Burián. Comparative epidemiology and resistance trends of common urinary pathogens in a tertiary-care hospital: A 10-year surveillance study. Medicina [Internet]. MDPI AG. 2019;55(7):356.
Available:http://dx.doi.org/10.3390/medicina55070356

Paczosa MK, Mecsas J. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiology and Molecular Biology Reviews [Internet]. American Society for Microbiology. 2016; 80(3):629–61.
Available:http://dx.doi.org/10.1128/mmbr.00078-15

Jacoby GA. AmpC beta-lactamases. Clinical Microbiology Reviews. 2009; 22(1):161–182.
DOI: 10.1128/CMR.00036-08

Gupta A, Ampofo K, Rubenstein D, Saiman L. Extended spectrum β Lactamase-producing Klebsiella pneumoniae infections: A review of the literature. Journal of Perinatology [Internet]. Springer Nature. 2003;23(6):439-43.
Available:http://dx.doi.org/10.1038/sj.jp.7210973

Derakhshan S, Najar Peerayeh S, Bakhshi B. Association between presence of virulence genes and antibiotic resistance in clinical Klebsiella pneumoniae isolates. Laboratory Medicine [Internet]. Oxford University Press (OUP). 2016;47(4):306-11.
Available:http://dx.doi.org/10.1093/labmed/lmw030

Alvarez M, Tran JH, Chow N, Jacoby GA. Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob. Agents Chemother. 2004;48:533-537.

Gajdács, Bátori, Ábrók, Lázár, Burián. Characterization of resistance in gram-negative urinary isolates using existing and novel indicators of clinical relevance: A 10-year data analysis. Life [Internet]. MDPI AG. 2020;10(2):16.
Available:http://dx.doi.org/10.3390/life10020016

Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983;11:315-317.

Quinn JP, Miyashiro D, Sahm D, Flamm R, Bush K . Novel plasmid-mediated β-lactamase (TEM-10) conferring selective resistance to ceftazidime and aztreonam in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1989;33: 1451–1456.

Nathisuwan S, Burgess DS, Lewis JS. Extended-spectrum β-lactamases: Epidemiology, detection, and treatment. Pharmacotherapy. 2001;21:920–928.

Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: Risk factors for infection and impact of resistance on outcomes. Clin Infect Dis. 2001;32:1162–1171.

Frirdich E, Whitfield C. Lipopoly-saccharide inner core oligosaccharide structure and outer membrane stability in human pathogens belonging to the Enterobacteriaceae. J Endotoxin Res. 2005;11:133-144.
Available:http://dx.doi.org/10.1177/09680519050110030201

Domenico P, Salo RJ, Cross AS, Cunha BA. Polysaccharide capsule-mediated resistance to opsonophagocytosis in Klebsiella pneumoniae. Infect Immun. 1994;62:4495–4499.

Struve C, Bojer M, Krogfelt KA. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun. 2008;76:4055–4065.
Available:http://dx.doi.org/10.1128/IAI.00494-08

Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007; 71:413–451.
Available:http://dx.doi.org/10.1128/MMBR.00012-07

Gajdács M, Urbán E. Resistance trends and epidemiology of Citrobacter-enterobacter-serratia in urinary tract infections of inpatients and outpatients (RECESUTI): A 10-year survey. Medicina [Internet]. MDPI AG. 2019;55(6):285.
Available:http://dx.doi.org/10.3390/medicina55060285

Yu WL, Ko WC, Cheng KC, Lee CC, Lai CC, Chuang YC. Comparison of prevalence of virulence factors for Klebsiella pneu¬moniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn Microbiol Infect Dis. 2008;62:1-6.

Yu WL, Ko WC, Cheng KC, Lee HC, Ke DS, Lee CC, Fung CP, Chuang YC. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis. 2006;42:1351-1358.

Mamlouk K, Boutiba-Ben Boubaker I, Gautier V, Vimont S, Picard B, Ben Redjeb S. Emergence and outbreaks of CTX-M beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae strains in a Tunisian hospital. J Clin Microbiol. 2006; 44:4049-4056.

El Fertas-Aissani R, Messai Y, Alouache S, Bakour R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol. 2013;61: 209-216.

Guiral E, Bosch J, Vila J, Soto SM. Prevalence of Escherich¬ia coli among samples collected from the genital tract in preg¬nant and nonpregnant women: Relationship with virulence. FEMS Microbiol Lett. 2011;314:170-173.

Sebghati TAS, Korhonen TK, Hornick DB, Clegg S. Charac¬terization of the type 3 fimbrial adhesins of Klebsiella strains. Infect Immun. 1998;66:2887-2894.

Gajdács M, Urbán E. The relevance of anaerobic bacteria in brain abscesses: A ten-year retrospective analysis (2008–2017). Infectious Diseases [Internet]. Informa UK Limited. 2019;51(10):779– 81.
Available:http://dx.doi.org/10.1080/23744235.2019.1648857

Regué M, Hita B, Piqué N, Izquierdo L, Merino S, Fresno S, Tomás JM. A gene, uge, is essential for Klebsiella pneumoniae virulence. Infection and Immunity. 2004; 72(1):54–61.
DOI: 10.1128/iai.72.1.54-61.2004

Pegah Shakib, Morovvat Taheri Kalani, Rashid Ramazanzadeh, Amjad Ahmadi, Samaneh Rouh. Molecular detection of virulence genes in Klebsiella pneumoniae clinical isolates from Kurdistan province, Iran. Biomedical Research and Therapy. 2018;5(8):2581-2589.
DOI: 10.15419/bmrat.v5i8.467

Ramirez P, Bassi GL, Torres A. Measures to prevent nosocomial infections during mechanical ventilation. Curr Opin Crit Care. 2012;18:86–92.
Available:http://dx.doi.org/10.1097/MCC.0b013e32834ef3ff

Struve C, Bojer M, Krogfelt KA. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun. 2008;76:4055–4065.
Available:http://dx.doi.org/10.1128/IAI.00494-08

Luis Izquierdo, Nu´ria Coderch, Nuria Pique, et al. The Klebsiella pneumoniae wabG Gene: Role in biosynthesis of the core lipopolysaccharide and virulence. J Bacteriol. 2003;185(24):7213-21.

Ahmed Abduljabbar, Jaloob Aljanaby, Alaa Hassan Abdulhusain Alhasani. Virulence factors and antibiotic susceptibility patterns of multidrug resistance Klebsiella pneumoniae isolated from different clinical infections. African Journal of Microbiology Research. 2016;10(22):829-843.

Gajdács M, Spengler G. The role of drug repurposing in the development of novel antimicrobial drugs: Non-antibiotic pharmacological agents as quorum sensing-inhibitors. Antibiotics [Internet]. MDPI AG. 2019;8(4):270.
Available:http://dx.doi.org/10.3390/antibiotics8040270

Candan ED, Aksöz N. Klebsiella pneumoniae: Characteristics of carbapenem resistance and virulence factors. Acta Biochimica Polonica [Internet]. Polskie Towarzystwo Biochemiczne (Polish Biochemical Society). 2015;62(4):867- 74.
Available:http://dx.doi.org/10.18388/abp.2015_1148

Derakhshan S, Najar Peerayeh S, Bakhshi B. Association between presence of virulence genes and antibiotic resistance in clinical Klebsiella pneumoniae isolates. Laboratory Medicine [Internet]. Oxford University Press (OUP). 2016;47(4):306-11.