POTENTIALITY EXPLORATION OF NATIVE ARBUSCULAR MYCORRHIZAL FUNGI IN Argania spinosa (L.) Skeels GROWTH UNDER NURSERY CONDITIONS

Main Article Content

OUALLAL IMANE
ROCHDI ATMANE
EL YACOUBI HOUDA
ECH-CHEDDADI SARA
EL GOUMI YOUNES
ABBAS YOUNES

Abstract

The use of beneficial microorganisms in the regeneration of forest species is a rational approach that both reduces inputs and preserves forest ecosystems. From this perspective, the objectives of this study were (i) to select the most efficient mycorrhizal complex and (ii) to evaluate the effects of indigenous arbuscular mycorrhizal fungi (AMF) selected of argan trees [Argania spinosa (L.) Skeels] from southwest Morocco on the growth of argan plants in nursery conditions. The result of the mycorrhizal potential test favoured the soils harvested in the Argana and Bouyzakarne argan forests. The results of inoculation of argan plants by the AMF confirm the strong dependence of the argan tree on the native AMF for the improvement of the quality of seedlings in nurseries. The weight of the aerial and root dry matter and the ratio (dry root weight / dry leaf weight) are the criteria which give the best estimate of this growth. It would therefore be interesting to make the best use of this potential and to transfer mycorrhizal plants with efficient strains to the field in order to improve their survival and their initial growth.

Keywords:
Argania spinosa, growth, native arbuscular mycorrhizal fungi (AMF), nursery conditions

Article Details

How to Cite
IMANE, O., ATMANE, R., HOUDA, E. Y., SARA, E.-C., YOUNES, E. G., & YOUNES, A. (2020). POTENTIALITY EXPLORATION OF NATIVE ARBUSCULAR MYCORRHIZAL FUNGI IN Argania spinosa (L.) Skeels GROWTH UNDER NURSERY CONDITIONS. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 20(23-24), 1320-1330. Retrieved from https://www.ikprress.org/index.php/PCBMB/article/view/4883
Section
Original Research Article

References

Smith SA, Smith A, Jakobsen I. Mycorrhizal fungican dominate phosphate supply to plants irrespective of growth reponses. Plant Physiology. 2003;133:10-20.

Fortin J, Plenchette C, Piché Y. Les mycorhizes: La nouvelle révolution verte. Québec, Editions MultiMondes. 2008;138.

Garbaye J. La symbiose mycorhizienne, une association entre les plantes et les champignons. Ed. Quae, Versailles. 2013;251.

Smith SE, Read DJ. Mycorrhizal symbiosis. Academic Press, San Diego. 1997;607.

Barea JM, Azcon R, Azcón-Aguilar C. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek. 2002;81:343–351.

Smith SE, Smith FA. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia. 2012;104(1):1-13.

Smith SE, Read DJ. Mycorrhizal symbiosis, 3rd Edition. Waltham, MA, USA: Academic Press; 2008.

Roy-Bolduc A, Hijri M. The use of mycorrhizae to enhance phosphorus uptake: A way out the phosphorus crisis. Journal of Biofertilizers and Biopesticidess. 2010;2(1).

Ismail Y, Hijri M. Arbuscular mycorrhisation with Glomus Irregulareiduces expression of potato PR homologues genes in reponse to infection by Fusatium sambucinum. Functional Plant Biology, Vom. 2012;39(3):236-245.

Ismail Y, Mc Comick S, Hijri M. The arbuscular mycorrhizal fungus, glomus irregular, controls the mycotoxin production of Fusarium sambucinum in pathogenesis of potato. YaacovOkon Edition, Federation of European Mycrobiological Societies. 2013;6:348.

Al-Karaki GN, Hammad R, Rusan M. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza. 2001;11:43–47.

Feng G, Zhang FS, Li XL, Cian CY, Tang C, Rengel Z. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 2002;12:185–190.

Rillig MC, Mummey DL. Mycorhizes et structure du sol. Nouveau Phytol. 2006;171:41–53.

Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M. Changes in soil aggregation and glomalin-related soil protein content as affected by arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol. Biochem. 2009;41:1491-1496.

Peng S, Guo T, Liu G. The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in Southwest China. Biologieetbiochimie du Sol. 2013;57:411-417.

Borie F, Rubio R, Morales A. Arbuscular mycorrhizal fungi and soil aggregation. J. Soil Sci. Plant Nutr. 2008;8:9-18.

Kohler-Milleret R, Le Bayon RC, Chenu C, Gobat JM, Boivin P. Impact of two root systems, earthworms and mycorrhizae on the physical properties of an unstable silt loam Luvisol and plant production. Plant Soil. 2013;370:251-265.

Msanda F, El Aboudi A, Peltier JP. Biodiversité et biogéographie de l’arganeraie marocaine. Cahiers Agricultures. 2005;14:357-364.

Charrouf Z, Guillaume D. Argan oil, the 35 years of research product. Eur. J. Lipid Sci. Technol. 2014;116:1316–1321.

Abourouh M. La recherche scientifique sur l’arganier: Bilan et perspectives. Ann. Rech. For. T. 2007;38:22-31.

Achouri M. Endogonaceae of Souss Massa, Morocco. PhD Thesis, University of Minnesota, USA. 1989;121.

Nouaim R, Chaussod R. Mycorrhizal dependency of two clones of micropropagated Argan tree (Argania spinosa): I) Growth and biomass production. Agroforestry Systems. 1994;27:53-65.

Kenny L, Galiana A, Bellefontaine R. Projet UE/MEDA/ADS. Appui à l’amélioration de la situation de l’emploi de la femme rurale et gestion durable de l’arganeraie dans le sud-ouest du Maroc - Thème 2: Multiplication végétative et symbioses racinaires de l’arganier: Optimisation des agrosystèmes à base d’arganier. Agence du Développement Social (Maroc) et Agropolis (France), Rapport Final. 2009;1-71.

Ouallal I, Abbas Y, Ech-cheddadi S, Ouajdi M, Ouhadach M, El Yacoubi H, Kerdouh B, El Goumi Y, Rochdi A. Diversité des champignons endomycorhiziens de l’arganier et potentiel mycorhizogène des sols rhizosphériques des arganeraies du Sud-Ouest marocain. Bois etForêts des Tropiques. V, 338 – 4e trimestre. 2018;73-86.

Bousselmane F, Kenny L, Achouri M. Effet des mycorhizes à vésicules et arbuscules sur la croissance et la nutrition de l’arganier (Argania spinosa L.). Actes Inst. Agron. Vet. Maroc. 2002;22(4):193-198.

Nouaim R, Chaussod R. Réponse à la mycorhization de plants d’arganier (Argania spinosa) multipliés par bouturage. Al Alwania. 2002;105:9-22.

Echairi A, Nouaim R, Chaussod R. Intérêt de la mycorhization contrôlée pour la production de plants d'arganier (Argania spinosa) en conditions de pépinière. Sécheresse. 2008;19(4):277-281.

Sieverding E. Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaftfür Technische Zusammenarbeit (GTZ). Eschborn, Germany. 1991;371.

Philips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. 1970;55:158-161.

Sanon AA. D.E.A. National de SCIENCE DU SOL: Rôle des champignons mycorhiziens à arbuscules dans les mécanismes régissant la co-existence entre espèces végétales. Nancy, France. 2005;4-6.

Cochran WG. Estimation of bacterial densities by means of the "most probable number". Biometrics 6. 1950;105-116.

Alexander M. Most probable number method for microbial populations. In C. A. Black et al. (Ed.), Methods of soil analysis, part 2. American Society Agronomy, Madison, Wis. 1965;1467-1472.

Fisher RA, Yates F. Statistical Tables for Biological Agriculture and Medical Research, Sixth Ed. Hafner Publ. Comp., Davien; 1970.

Plenchette C, Fortin JA, Furlan V. Growth responses of several plant species to mycorrhizae in a soil of moderate P fertility: I. Mycorrhizal dependency under field conditions. Plant Soil. 1983;70:199-209.

Caravaca F. Establishment of shrub species in a degraded semi-arid site after inoculation with native or allochthonous arbuscular mycorrhizal fungi. Appl. Soil Ecol. 2003b;22:103-111.

Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM. Management of indigenous plant–microbe symbioses aids restoration of desertified ecosystems. Appl. Environ. Microbiol. 2001;67:495–498.

Caravaca F. Re-establishment of Retamas phaerocarpaas a target species for reclamation of soil physical and biological properties in a semi-arid Mediterranean land. For. Ecol. Manage. 2003a;182:49- 58.

Ouahmane L, Hafidi M, Thioulouse J, Ducousso M, Kisa M, Prin Y, Galiana A, Boumezzough A, Duponnois R. Improvement of Cupressus atlantica Gaussen growth by inoculation with native arbuscular mycorrhizal fungi. J. App. Microbiol. 2007;103:683–690.

Johnson NC, Wilson GW, Bowker MA, Wilson JA, Miller RM. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc. Natl. Acad. Sci. U.S.A. 2010;107:2093–2098.

Duponnois R, Ouahmane L, Kane A, Thioulouse J, Hafidi M, Boumezzough A, Prin Y, Baudoin E, Galiana A, Dreyfus B. Nurse shrubs increased the early growth of Cupressus seedlings by enhancing belowground mutualism and microbial soil functionalities. Soil Biology. Biochemistry. 2011;43:2160–2168.

El Mrabet S, Ouahmane L, El Mousadik A, Msanda F, Abbas Y. L’éfficacité de l’inoculation mycorhyzienne et de l’addition du bio-compost sur le développement d’Argania spinosasur le champ. Actes du 2ème Congrès International de l’Arganier, Maroc. 2013;47-58.

Oihabi A, Meddich A. Effet des mycorhizes à arbuscules (MA) sur la croissance et la composition minérale du trèfle. Cahiers Agricultures. 1996;5(5):382-386.

Plenchette C, Strullu DG. Les mycorhizes, situation et perspectives pour le pépiniériste et l’horticulteur. PHM Revue Horticole. 1996;365:72-76.

Ouahmane L, Ndoye I, Morino A, Ferradous A, Sfairi Y, Al Faddy M, Abourouh M. Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal fungi mixture improves seedling establishment under greenhouse conditions. Afr. J. Biotechnol. 2012;11:16422–16426.

Dag A, Yermiyahu U, Ben-Gal A, Zipori I, Kapulnik Y. Nursery and post transplant field response of olive trees to arbuscular mycorrhizal fungi in an arid region. Crop Pasture Science. 2009;60:427-433.

Rinaldelli E, Mancuso S. Response of young mycorrhizal and non mycorrhizal plants of olive tree (Olea europaea.) to saline conditions. I Short term electrophysiological and long term vegetative salt effects. Adv. Hort. Sci. 1996;10:126-134.

Kumar A, Dames JF, Gupta A, Sharma S, Gilbert JA, Ahmad P. Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective. Critical Reviews in Biotechnology. 2014;35:461-474.

Tobar RM, Azcón R, Barea JM. The improvement of plant N acquisition from an ammonium-treated, drought stressed soil by the fungal symbiont in arbuscular mycorrhizae. Mycorrhiza. 1994;4:105-108.

Hill JO, Simpson RJ, Ryan MH, Chapman DF. Root hair morphology and mycorrhizal colonization of pasture species in response to phosphorus and nitrogen nutrition. Crop Pasture Science. 2010;61:122-131.

Smith SE, Anderon IC, Smith FA. 14 mycorrhizal associations and phosphorus acquisition: From cells to ecosystems. Annual Plant Reviews book series, Volume 48: Phosphorus Metabolism in Plants IV. Significance of Plant‐Microbe Interactions for P‐Acquisition and Metabolism; 2018.

Guissou T, BâamOudba JM, Guinko S, Duponnois R. Reponses of Parkia biglobosa (Jacq.) Benth, Tamarindus indica L. and Zizphus mauritiana L am. to arbuscular mycorrhizal fungi in a phosphorus deficient soil. Biology and Fertility of Soils. 1998;26:194-198.