EFFECT OF A COMPOSITE ENDOMYCORRHIZAL INOCULUM ON THE GROWTH OF SAFFRON PLANTS (Crocus sativus L.) AND THE MULTIPLICATION OF CORMS

Main Article Content

I. EL AYMANI
M. CHLIYEH
K. SELMAOUI
N. MOUDEN
S. EL GABARDI
A. OUAZZANI TOUHAMI
R. BENKIRANE
A. DOUIRA

Abstract

Composite endomycorrhizal inocula originating from plots of saffron crops of different durations of exploitation (2, 4, 6 and 10 years) were used to inoculate substrates intended to receive saffron corms (bulbs).  Four weeks after inoculation, the length of the aerial part (27 cm), the fresh weight of the aerial part (1.36 g), the fresh weight of the root part (0.82 g), the number of leaves (8.6) and the number of bulbs (3) in mycorrhizal saffron plants were higher than in non-mycorrhizal inoculated plants (18.6 cm, 0.25 g, 0.16 g, 3.6 and 1, respectively). A significant improvement in these parameters is noted in the plants grown from the bulbs grown on substrates inoculated with 2 inocula originating from the saffron cultures aged 4 and 6 years (7.25 and 8.6 cm, 1.35 and 1.32 g, 0.74 and 0.82 g; 2.2, respectively). These two inocula showed high activity in the rhizosphere of saffron plants, 16 endomycorrhizal species belonging to the genera Glomus, Acaulospora, Scutellospora, Gigaspora, Pacispora and Entrophospora, sporulated mycorrhizal plants in the rhizosphere with the inoculum of plots of 4 farms and 13 species belonging to the genera Glomus, Acaulospora, Pacispora and Scutellospora, sporulated rhizospheric soil with mycorrhizal plants with the inoculum from plots that were exploited for 6 years. The results of this study have shown that it is possible to improve the agronomic parameters of the plants and to stimulate the multiplication of the bulbs, base of the improvement of the saffron culture, by the contribution of inocula based of arbuscular mycorrhizal fungi.

Keywords:
Saffron, composite endomycorrhizal inoculums, growth parameters, corms, multiplication

Article Details

How to Cite
AYMANI, I. E., CHLIYEH, M., SELMAOUI, K., MOUDEN, N., GABARDI, S. E., TOUHAMI, A. O., BENKIRANE, R., & DOUIRA, A. (2019). EFFECT OF A COMPOSITE ENDOMYCORRHIZAL INOCULUM ON THE GROWTH OF SAFFRON PLANTS (Crocus sativus L.) AND THE MULTIPLICATION OF CORMS. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 20(23-24), 1122-1136. Retrieved from https://www.ikprress.org/index.php/PCBMB/article/view/4826
Section
Original Research Article

References

Dhar AK, Sapru R, Rekha K. Studies on saffron in Kashmir. 1. Variation in natural population and its cytological behaviour. Crop Improvement. 1988;15(1):48- 52.

Gresta F, Avola G, Lombardo GM, Siracusa L, Ruberto G. Analysis of flowering, stigmas yield and qualitative traits of saffron (Crocus sativus L.) as affected by environmental conditions. Scientia Horticulturae. 2009;119:320-324.

Dubois A. Analyse de la filière du safran au Maroc: Quelle perspective pour la mise en place d’une indication géographique? Thèse de ‘Master of Science’, N 107. Montpellier: CIHEAM-IAMM; 2010.

Aboudrare A, Aw-Hassan A, Lybbert TJ. Importance socio-économique du Safran pour les Ménages des Zones de Montagne de la Région de Taliouine-Taznakht au Maroc. Rev Marocaine Sci Agron Vét. 2014;2:5–14.

Agayev YM, Fernandez JA, Zarifi E. Clonal selection of saffron (Crocus sativus L.): The first optimistic experimental results. Euphytica. 2009;169:81–99.

Aziz L, Sadok W. Stratégies d’adaptation des producteurs du Safran de Taliouine (Maroc) face au changement climatique. Journal of Alpine Research, Revue de Géographie Alpine. 2015;103-2.

Gresta F, Lombardo GM, Siracusa L, Ruberto G. Saffron, an alternative crop for sustainable agricultural systems. A review. Agron. Sustain. Dev. 2008a;28:95–112. Gresta F, Lombardo GM, Siracusa L, Ruberto G. Effect of mother corm dimension and sowing time on stigma yield, daughter corms and qualitative aspects of saffron (Crocus sativus L.) in a Mediterranean environment. J. Sci. Food Agric. 2008b;88:1144–1150.

Kumar R, Singh V, Devi K, Sharma M, Singh MK, Ahuja PS. State of art of saffron (Crocus sativus L.) agronomy: A comprehensive review. Food Rev. 2009;25:44–85.

Negbi M, Dagan B, Dror A, Basker D. Growth, flowering, vegetative reproduction and dormancy in the saffron crocus (Crocus sativus L.). Isr. J. Bot. 1989;38:95–113.

Renau-Morata B, Moya L, Nebauer SG, SeguiSimarro JM, Para-Vega V, Gomez MD, Molina RV. The use of corms produced under storage at low temperatures as a source of explants for the in vitro propagation of saffron reduces contamination levels and increases multiplication rates. Ind. Crop Prod. 2013;46:97-104.

Sampathu SR, Shivashankar S, Lewis YS. Saffron (Crocus sativus L.) cultivation, processing chemistry and standardization CRC. Revision of Food Science Nutrition. 1984;20(2):123-157.

Devi SS, Philip BK, Alan W, John RL, Harihara MM. Prior administration of a low dose of thioacetamide protects type 1 diabetic rats from subsequent administration of lethal dose of thioacetamide. Toxicology. 2006; 226(2-3):107-17.

Renau-Morata B, Nebauer SG, Sánchez M, Molina RV. Effect of corm size, water stress and cultivation conditions on photosynthesis and biomass partitioning during the vegetative growth of saffron (Crocus sativus L.) Industrial Crops and Products. 2012;39:40-46.

Smith SE, Read DJ. Mycorrhiza! symbiosis, 2nd Edition, London, Academic Press; 1997.

Karagiannidis N, Hadjisavva-Zinoviadi S. The mycorrhizal fungus Glomus mosseae enhances growth, yield and chemical composition of a durum wheat variety in 10 different soils. Nutrient Cycling in Agroecosystems. 1998;52:1–7.

Goussous SJ, Mohammad MJ. Comparative effect of two arbuscular mycorrhizae and N and P fertilizers on growth and nutrient uptake of onions. International J. Agriculture and Biology. 2009;11:463– 467.

Lone R, Shuab R, Sharma V, Kumar V, Mir R, Koul KK. Effect of arbuscular mycorrhizal fungi on growth and development of potato (Solanum tuberosum). Plant. Asian J. Crop Science. 2015a;7:233–243.

Lone R, Shuab R, Wani KA, Ganaie MA, Tiwari AK, Koul KK. Mycorrhizal influence on metabolites, indigestible oligosaccharides, mineral nutrition and phytochemical constituents in onion (Allium cepa L.) plant. Scientia Horticulturae. 2015b;193:55–61.

Hernandez PJ, Andrzejewski ME, Sadeghian K, Panksepp JB, Kelley AE. AMPA/kainate, NMDA, and dopamine D1 receptor function in the nucleus accumbens core: A context-limited role in the encoding and consolidation of instrumental memory. Learn Mem. 2005;12:285–295.

Lambers H. Plant physiological ecology. Springer Verlag; 2008.

Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd Edn. Academic Press; 2008.

St-Arnaud M, Vujanovic V. Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel C, Plenchette C, (Eds) Mycorrhizae in crop production. Haworth Press, Binghampton, New York. 2007;67–122.

Herrera MA, Salamanca CP, Barea JM. Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl. Environ. Microbiol. 1993;59:129-133.

Alguacil M, Cuadros A, Orts V. Inward FDI and growth: The role of macroeconomic and institutional environment. Journal of Policy Modeling. 2011;33(3):481-496.

Carrillo-Garcia Á, Leó JL, Bashan Y, Bethlenfalvay GJ. Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restor. Ecol. 1999;7:321-335.

Rillig MC, Mummey DL. Mycorrhizas and soil structure. New Phytologist. 2006;171:41–53.

Schmid T, Meyer J, Oehl F. Integration of mycorrhizal inoculum in high alpine revegetation. In: Mycorrhiza Works. (Eds Feldmann F, Kapulnik Y, Baar J). Proceedings of the International Symposium «Mycorrhiza for Plant Vitality» and the Joint Meeting of Working Groups 1–4 of COST Action 870. Deutsche Phytomedizinische Gesellscha 2, Braunschweig, Germany. 2008;278–288.

Roldán A, Garc´ıa-Orenes F, Lax A. An incubation experiment to determine factors involving aggregation changes in an arid soil receiving urban refuse. Soil Biol. Biochem. 1994;26:1699–1707.

Garcia C, Hernández T, Albaladejo J, Castillo V, Roldán A. Revegetation in semiarid zones: Influence of terracing and organic refuse on microbial activity. Soil Sci. Soc. Am. J. 1998;62:670–676.

Luna Z, Héctor S, Solís OM, López WW, Vera RA, González P, Juan M. Effects of compost made with sludge and organic residues on bean (Phaseolus vulgaris L.) crop and arbuscular mycorrhizal fungi density. African Journal of Agricultural Research. 2011;6(6):1580-1585.

El Aymani I, El Gabardi S, Artib M, Chliyeh M, Selmaoui KA, Ouazzani TA, Benkirane R, Douira A. Effect of the number of years of soil exploitation by saffron cultivation in Morocco on the diversity of endomycorrhizal fungi. Acta Phytopathologica et Entomologica. 2019; 54(1):71–86.

Philips JM, Hayman DS. Improved procedures for clearing root and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970; 55:158-161.

Gerdemann JW, Nicholson TH. Spores for mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963;46:235-244.

Sanon AA. Rôle des champignons mycorhiziens à arbuscules dans les mécanismes régissant la coexistence entre espèces végétales. Thèse de Doctorat, Université Henri Poincare – Nancy I; 2005.

Van Der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf‐Engel R, Boller T, Wiemken A, Sanders IR. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 1998;396:72– 75.

Charest C, Dalpé Y, Brown A. The effect of vesicular-arbuscular mycorrhizae and chilling on two hybrids of maize. Mycorrhiza. 1993;4(2):89–92.

Kianmehr H. Vesicular—arbuscular mycorrhizal spore population and infectivity of saffron (Crocus sativus) in Iran. New Phytologist. 1981;88(1):79-82.

Shuab R, Lone R, Naidu J, Sharma V, Imtiyaz S, Koul K. Benefits of inoculation of arbuscular mycorrhizal fungi on growth and development of onion (Allium cepa) plant. American-Eurasian Journal of Agriculture & Environmental Science. 2014;14(6):527-535.

Anabat MM, Riahi H, Zanganeh S, Sadeghnezhad E. Effects of arbuscular mycorrhizal inoculation on the growth, photosynthetic pigments and soluble sugar of Crocus sativus (saffron) in autoclaved soil. International Journal of Agronomy and Agricultural Research (IJAAR). 2015; 6:296-304.

Auge RM. Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza. 2001; 11:3-42.

Xie X, Wen B, Cai B, Dong Y, Yan C. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil. Applied Soil Ecology. 2014;75:162-171.

Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology. 2009;68(1):1–13.

Karra Y, Tahiri A, Mokrini F, Wifaya F, Elame A, Mimouni A. Effet de la durée d’exploitation de la culture du safran (Crocus sativus L.), installée à différentes densités, sur la production et la multiplication et des cormes « semences », dans la région de Taliouine. Revue Marocaine des Sciences Agronomique et Vétérinaire. 2020;8(1). Abstract.

Sharaf-Eldin MA, Schnitzler WH, Nitz G, Razin AM, El-Oksh II. The effect of gibberellic acid (GA3) on some phenolic substances in globe artichoke (Cynara cardunculus var. scolymus (L.) Fiori). Scientia Horticulturae. 2007;111(4):326-329.

Koocheki A, Seyyedi M. Relationship between nitrogen and phosphorus use efficiency in saffron (Crocus sativus L.) as affected by mother corm size and fertilization. Industrial Crops and Products. 2015;71:128-137.

Gupta Rikita, Vakhlu Jyoti. Native Bacillus amyloliquefaciens W2 as a potential biocontrol for Fusarium oxysporum R1 causing corm rot of Crocus sativus European. Journal of Plant Pathology. 2015;143:123–131.