PHOSPHATIDYLINOSITOL 3-KINASE AS A BIOMARKER FOR BREAST CANCER: A REVIEW

PDF

Published: 2021-02-10

Page: 29-38


MARVIS AYOOLA AROWOLO *

Kwara State University, Malete, Kwara State, Nigeria.

MUTIU A. ALABI

Kwara State University, Malete, Kwara State, Nigeria.

EMMANUEL AJANI

Kwara State University, Malete, Kwara State, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

Cancer is one of the major causes of death in the world and the second leading cause of death after cardiovascular disease; approximately 70% of deaths from cancer occur in low- and middle- income countries. Breast cancer is the most prevalent cancer and the common cause of cancer mortality worldwide. Modification in various cell signalling pathways promotes cell proliferation, progression and survival. Phosphoinositide 3-kinase (PI3K) pathway is an intracellular signalling pathway that has regulatory roles in cell survival, proliferation, and differentiation. Activation of PI3K pathway contributes to the development of tumour, PI3K is an attractive therapeutic direction in the treatment of cancer. Inhibition of PI3K signalling is effective in the treatment of several types of cancer. In this review, PI3K inhibitors in breast cancer and combination of therapeutics strategies in cancer, importance of PI3K in breast cancer and current clinical studies were addressed.

Keywords: PI3K, breast cancer, biomarker, therapy


How to Cite

AROWOLO, M. A., ALABI, M. A., & AJANI, E. (2021). PHOSPHATIDYLINOSITOL 3-KINASE AS A BIOMARKER FOR BREAST CANCER: A REVIEW. Journal of Biochemistry International, 7(1), 29–38. Retrieved from https://ikprress.org/index.php/JOBI/article/view/6011


References

World Health Organization. International Agency for Research on Cancer; Latestglobal Cancer Data; 2018.

Alabi MA, Muthusamy A, Kabekkodu SP, Adebawo OO, Satyamoorthy K, Ajagun EJ. In vitro cytotoxicity of recipes derived from Nigerian medicinal plants (NMPs) on breast cancer. Int Chem Sci. 2017;90-97.

Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66:7e30.

Aizawa K, Liu C, Tang S. Tobacco carcinogen induces both lung cancer and non-alcoholic steatohepatitis and hepatocellular carcinomas in ferrets which can be attenuated by lycopene supplementation. International Journal of Cancer. 2016;139.

Elbachiri M, Fatima S, Bouchbika Z. Breast cancer in men: about 40 cases and literature review. Pan African Medical Journal. 2017; 28:287.

Yang J, Nie, J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Molecular Cancer. 2019;18(1):26.

Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4);605-635.

Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur J Med Chem. 2016;109:314-341.

Ortega MA, As´unsolo A, Leal J. Implication of the PI3K/Akt/mTOR pathway in the process of incompetent valves in patients with chronic venous insufficiency and the relationship with aging. Oxidative Medicine and Cellular Longevity. 2018;14.

Lien EC, Dibble CC, Toker A. PI3K signaling in cancer: beyond AKT. Current Opinion in Cell Biology. 2017;45:62-71.

Sai J, Owens P, Novitskiy SV, Hawkins OE, Vilgelm AE, Yang J, Sobolik T, Lavender N, Johnson AC, McClain C, Ayers GD, Kelley MC, Sanders M, Mayer IA, Moses HL, Boothby M, Richmond A. PI3K inhibition reduces mammary tumor growth and facilitates antitumor immunity and anti-PD1 responses. Clinical Cancer Research. 2017;23(13):3371–3384.

She QB, Gruvberger-Saal SK, Maurer M, Chen Y, Jumppanen M, Su T, Dendy M, Lau YK, Memeo L, Horlings HM, van de Vijver MJ, Isola J, Hibshoosh H, Rosen N, Parsons R, Saal LH. Integrated molecular pathway analysis informs a synergistic combination therapy targeting PTEN/PI3K and EGFR pathways for basal-like breast cancer. BMC Cancer. 2016;16(1):587.

Triscott J, Rubin MA. Prostate Power Play: Does Pik3ca Accelerate Pten- Deficient Cancer Progression? Cancer Discov. 2018;8: 682–5.

Croessmann S, Sheehan JH, Lee KM, Sliwoski G, He J, Nagy R, Riddle D, Mayer IA, Balko JM, Lanman R. PIK3CA C2 Domain Deletions Hyperactivate Phosphoinositide 3-kinase (PI3K), Generate Oncogene Dependence, and Are Exquisitely Sensitive to PI3Kalpha Inhibitors. Clin Cancer Res. 2018;24:1426-1435.

Keegan NM, Gleeson JP, Hennessy BT, Morris PG. PI3K inhibition to overcome endocrine resistance in breast cancer,”. Expert Opinion on Investigational Drugs. 2018;27(1):1–15.

Zhang J, Xu K, Liu P, Geng Y,Wang B, Gan W. Inhibition of Rb phosphorylation leads to mTORC2-mediated activation of Akt. Mol Cell. 2016;62(6):929–42.

Martın M, Chan A, Dirix L. A randomized adaptive phase II/III study of buparlisib, a pan-class I PI3K inhibitor, combined with paclitaxel for the treatment of HER2- advanced breast cancer (BELLE-4). Ann Oncol. 2017;28(2):313–320.

Ardestani A, Lupse B, Kido Y, Leibowitz G, Maedler K. mTORC1 signaling a double-edged sword in diabetic cells. 2018;27(2):314-331.

Okkenhaug K, Graupera M, Vanhaesebroeck B. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discovery. 2016; 6(10):1090–1105.

Toska E, Osmanbeyoglu HU, Castel P, Chan C, Hendrickson RC, Elkabets M, Dickler MN, Scaltriti M, Leslie CS, Armstrong SA, Baselga J. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017; 355:1324–1330.

Rimawi MF, De Angelis C, Contreras A, Pareja F, Geyer FC, Burke KA, Herrera S, Wang T, Mayer IA, Forero A, Nanda R, Goetz MP, Chang JC, Krop IE, Wolff AC, Pavlick AC, Fuqua SAW, Gutierrez C, Hilsenbeck SG, Li MM, Weigelt B, Reis-Filho JS, Kent Osborne C. Low PTEN levels and PIK3CA mutations predict resistance to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2 over-expressing breast cancer. Breast Cancer Research and Treatment. 2018;167(3):731–740.

Juric D, Rodon J, Tabernero J, Janku F, Burris HA, Schellens JHM, Middleton MR, Berlin J, Schuler M, Gil-Martin M, Rugo HS, Seggewiss-Bernhardt R, Huang A, Bootle D, Demanse D, Blumenstein L, Coughlin C, Quadt C, Baselga J. Phosphatidylinositol 3-kinase a-selective inhibition with alpelisib (BYL719) in PIK3CA-altered solid tumors: results from the first-in-human study. Journal of Clinical Oncology. 2018;36(13):1291–1299.
DOI: 10.1200/JCO.2017.72.7107.

Condorelli R, Andre F. Combining PI3K and PARP inhibitors for breast and ovarian cancer treatment. Annals of Oncology. 2017;28(6): 1167-1168.

Khalil BD, Hsueh C, Cao Y, Abi Saab WF,Wang Y, Condeelis JS, Bresnick AR, Backer JM. GPCR signaling mediates tumor metastasis via PI3Kb. Cancer Research. 2016;76(10):2944–2953.
DOI: 10.1158/0008-5472.

Im SA, Lu YS, Bardia A. overall survival with ribociclib plus endocrine therapy in breast cancer. N Engl J Med. 2019;381(4):307.

Goel S, DeCristo MJ, McAllister SS, Zhao JJ. CDK4/6 inhibition in cancer: beyond cell cycle arrest. Trends Cell Biol. 2018;35(32): 911-925.

Herrera-Abreu M, Palafox M, Asghar U. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptorpositive breast cancer. Cancer Res. 2016;76(8):230113.

André F, Ciruelos EM, Rubovszky G, Campone M, Loibl S, Rugo HS. LBA3_PRAlpelisib (ALP) + fulvestrant (FUL) for advanced breast cancer (ABC): Results of the phase III SOLAR-1 trial. Ann Oncol. 2018;29(suppl_8): mdy424.010-mdy424.010.

Guerin M, Rezai K, Isambert N, Campone M, Autret A, Pakradouni J, Provansal M, Camerlo J, Sabatier R, Bertucci F, Charafe-Jauffret E, Hervieu A, Extra JM, Viens P, Lokiec F, Boher JM, Goncalves A. PIKHER2: A phase IB study evaluating buparlisib in combination with lapatinib in trastuzumab-resistant HER2-positive advanced breast cancer. European Journal of Cancer. 2017;86:28-36.