Main Article Content



Novel vesicular drug delivery systems have brought the pharmaceutical industry to a whole new level, by addressing numerous drawbacks associated with drug delivery. Novel drug delivery provides a suitable means of delivering the drug molecules to the desired site of action at a pre-determined rate that is site-specific and time-controlled. The vesicular system functions by encasing active moieties inside the vesicles. Encapsulation of the drug has several benefits, including extended drug existence, improved solubility, increased therapeutic index, and reduced side effects in the systemic circulation. Because of their widespread and extensive use, several novel vesicular carrier systems like liposomes, ethosomes, transferosomes, phytosomes, niosomes, discosomes, archaeosomes, ufosomes have emerged as the preferred vehicle for the delivery of several medications and the development of their formulations. In this review article, we have attempted to assimilate all the relevant knowledge about the recent studies conducted on nanovesicles, following their exploration in the outbreak of Covid-19. 

Vesicular drug delivery systems, COVID-19, nanovesicles, liposomes, targeted drug delivery, niosomes

Article Details

How to Cite
KAUR, N., KAUR, L., SINGH, G., DHAWAN, R. K., SINGH, S., & CHEMBAN, S. A. (2021). NOVEL VESICULAR CARRIERS: AN UPDATED REVIEW. Journal of International Research in Medical and Pharmaceutical Sciences, 16(2), 9-22. Retrieved from
Review Article


Jadhav SM, Morey P, Karpe MM, Kadam V. Novel vesicular system: An overview. Journal of Applied Pharmaceutical Science. 2012;2(1):193-202.

Bingham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface active agents as observed in the electron microscope. Journal of Molecular Biology. 1965;8:660-8.
DOI: 10.1016/s0022-2836(64)80115-7

Jain A, Kumari R, Tiwari A, Verma A, Tripathi A, Shrivastava A, et al. Nanocarrier based advances in drug delivery to tumour: An overview. Current Drug Targets. 2018;19(13):1498-1518.
DOI: 10.2174/1389450119666180131105822

Romero EL, Morilla MJ. Highly deformable and highly fluid vesicles as potential drug delivery systems: Theoretical and practical considerations. International Journal of Nanomedicine. 2013;8:3171-86.
DOI: 10.2147/IJN.S33048

Kumar A, Pathak K, Bali V. Ultra-adaptable nanovesicular systems: A carrier for systemic delivery of therapeutic agents. Drug Discovery Today. 2012;17(21-22):1233-41.
DOI: 10.1016/j.drudis.2012.06.013

Biju SS, Talegaonkar S, Mishra PR, Khar RK. Vesicular systems: An overview. Indian Journal of Pharmaceutical Sciences. 2006; 68(2):141-53.
DOI: 10.4103/0250-474X.25707

Kamboj S, Saini V, Magon N, Bala S, Jhawat V. Vesicular drug delivery systems: A novel approach for drug targeting. International Journal of Drug Delivery. 2013;5(2):121–30.

Namdeo GS, Nagesh HA, Ajit SK. Recent advances in vesicular drug delivery system. Research Journal of Pharmaceutical Dosage Forms and Technology. 2014;6(2): 110–20.
Doi: 10.5958/0975-4377

Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology 2016; 44(1):381-91.
DOI: 10.3109/21691401.2014.953633

Ashara CK, Paun SJ, Soniwala MM, Chavda JR, Nathawani SV, Mori MN et al. Vesicular drug delivery system: A novel approach. Mintage Journal of Pharmaceutical and Medical Sciences. 2014;3(3):1-14.

Farzaneh H, Ebrahimi Nik M, Mashreghi M, Saberi Z, Jaafari MR, Teymouri M. A study on the role of cholesterol and phosphatidylcholine in various features of liposomal doxorubicin: From liposomal preparation to therapy. International Journal of Pharmaceutics. 2018;551(1-2):300-8.
DOI: 10.1016/j.ijpharm.2018.09.047

Sharma A, Sharma US. Liposomes in drug delivery: Progress and limitations. International Journal of Pharmaceutics. 1997; 154(2):123-40.
DOI: 10.1016/S0378-5173(97)00135-X

Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: Classification, preparation, and applications. Nano scale Research Letters. 2013;8(1):102.
DOI: 10.1186/1556-276X-8-102

Pandit D, Rathore KS. Novel and most prominent carrier system transethosome for topical delivery. Pharmaceutical Resonance. 2021;3(2):19-27.

Cevc G, Gebauer D, Stieber J, Schätzlein A, Blume G. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochimica et Biophysica Acta. 1998; 1368(2):201-15.
DOI: 10.1016/s0005-2736(97)00177-6

Jain S, Jain P, Umamaheshwari RB, Jain NK. Transferosomes: A novel vesicular carrier for enhanced transdermal delivery: Development, characterization and performance evaluation. Drug Development and Industrial Pharmacy. 2003;29(9):1013-26.
DOI: 10.1081/ddc-120025458.

Paul A, Cevc G, Bachhawat BK. Transdermal immunisation with an integral membrane component, gap junction protein, by means of ultradeformable drug carriers, transfersomes. Vaccine. 1998;16(2-3):188-95.
DOI: 10.1016/s0264-410x(97)00185-0

Sharma U, Verma P, Jain NK. A review on novel vesicular drug delivery system: Transfersomes. International Journal of Pharmacy & Life Sciences. 2020;11(7):6812-24.

Kumar A, Nayak A, Ghatuary SK, Dasgupta S, Jain AP. Transferosome: A recent approach for transdermal drug delivery. Journal of Drug Delivery and Therapeutics. 2018;8(5-s):100-4.
DOI: 10.22270/jddt.v8i5-s.1981

Durairaj A, Sachinandan B. Ethosomes a noninvasive approach for transdermal drug delivery. International Journal of Current Pharmaceutical Research. 2010;2(4):1-4.

Nandure H, Puranik P, Giram P, Lone V. Ethosome: A novel drug carrier. International Journal of Pharmaceutical Research & Allied Sciences. 2013;2(3):18-30.

Fatima GX, Rahul RS, Reshma I, Sandeep T, Shanmuganathan S, Chamundeeswari D. Herbal ethosomes - A novel approach in herbal drug technology. American Journal of Ethnomedicine. 2014;1(4):226-230.

Abdelkader H, Alani AW, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Delivery. 2014;21(2):87-100.
DOI: 10.3109/10717544.2013.838077

Seleci Ag D, Seleci M, Walter JG, Stahl F, Scheper T. Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications. Journal of Nanomaterials. 2016; 3:1-13.
DOI: 10.1155/2016/7372306

Rao NN, Babu PS, Chowdary AD, Divya Y, Laksmi ST, Latha SSK, Sirisha P. Niosomes: A Vesicular Drug Delivery System. Research Journal Pharmacy and Technology. 2018; 11(8):3731-3736.
DOI: 10.5958/0974-360X.2018.00684.4

Akhtar N. Vesicles: A recently developed novel carrier for enhanced topical drug delivery. Current Drug Delivery. 2014;11(1): 87–97.
DOI: 10.2174/15672018113106660064

Bhardwaj P, Tripathi P, Gupta R, Pandey R. Niosomes: A review on niosomal research in the last decade. Journal of Drug Delivery Science and Technology. 2020;56(Part A): 101581.
DOI: 10.1016/J.JDDST.2020.101581

Asadujjaman MD, Mishuk AU. Novel approaches in lipid based drug delivery systems. Journal of Drug Delivery and Therapeutics. 2013;3(4):124-30.
DOI: 10.22270/jddt.v3i4.578J

Benvegnu T, Lemiègre L, Cammas-Marion S. New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Recent Patents on Drug Delivery & Formulation. 2009;3(3):206-20.
DOI: 10.2174/187221109789105630

Patel GB, Sprott GD. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Critical Reviews in Biotechnology. 1999;19(4):317-57.
DOI: 10.1080/0738-859991229170

Kaur G, Garg T, Rath G, Goyal AK. Archaeosomes: An excellent carrier for drug and cell delivery. Drug Delivery. 2016;23(7):2497-2512.
DOI: 10.3109/10717544.2015.1019653

Kumar GP, Rao PR. Nonionic surfactant vesicular systems for effective drug delivery-An overview. Acta Pharmaceutica Sinica B. 2011;1(4):208-19.
DOI: 10.1016/J.APSB.2011.09.002

Uchegbu IF, Bouwstra JA, Florence AT. Large disk-shaped structures (discomes) in nonionic surfactant vesicle to micelle transitions. Journal of Physical Chemistry. 1992;96(25):10548-53.
DOI: 10.1021/j100204a077

Baranowski P, Karolewicz B, Gajda M, Pluta J. Ophthalmic drug dosage forms: Characterisation and research methods. Scientific World Journal. 2014;2014: 861904.
DOI: 10.1155/2014/861904

Bansal S, Kashyap PK, Aggarwal G, Harikumar SL. A comparative review on vesicular drug delivery system and stability issues. International Journal of Research in Pharmacy and Chemistry. 2012; 2(3):704-13.

Saurabh B, Chandan PK, Geeta A, Harikumar SL. A comparative review on vesicular drug delivery system and stability issues. International Journal of Pharmacy and Chemistry 2012;2:704-13.

Dhyani A, Juyal D. Phytosomes: An advanced herbal drug delivery system. Current Trends in Biomedical Engineering & Biosciences. 2017; 3(5):74-5.
DOI: 10.19080/CTBEB.2017.03.555621

Sindhumol PG, Thomas M, Mohanachandran PS. Phytosomes: A novel dosage form for enhancement of bioavailability of botanicals and neutraceuticals. International Journal of Pharmacy and Pharmaceutical Sciences. 2010; 2(4):10¬-4.

More MS, Shende MA, Kolhe DB, Jaiswal NM. Herbosomes: Herbo phospholipid complex an approach for absorption enhancement. International Journal of Biological & Pharmaceutical Research. 2012; 3(8):946-55.

Patel A, Tanwar YS, Suman R, Patel P. Phytosome: Phytolipid drug dilivery system for improving bioavailability of herbal drug. Journal of Pharmaceutical Science and Bioscientific Research 2013;3(2):51-7.

Morigaki K, Walde P. Fatty acid vesicles. Current Opinion in Colloid & Interface Science. 2007;12(2):75-80.
DOI: 10.1016/j.cocis.2007.05.005

Gebicki JM, Hicks M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature. 1973;243(5404):232-4.
DOI: 10.1038/243232a0

Arundhasree R, R R, R A, Kumar AR, Kumar SS, Nair SC. Ufasomes: Unsaturated fatty acid based vesicular drug delivery system. International Journal of Applied Pharmaceutics. 2021;13(2):76-83.

Patel DM, Jani RH, Patel CN. Ufasomes- A vesicular drug delivery. Systematic Reviews in Pharmacy. 2011;2(2):72-8.
DOI: 10.4103/0975-8453.86290

Kesharwani P, Md S, Alhakamy NA, Hosny KM, Haque A. QbD enabled azacitidine loaded liposomal nanoformulation and its in vitro evaluation. Polymers (Basel). 2021;13(2):250.
DOI: 10.3390/polym13020250

Han B, Yang Y, Chen J, Tang H, Sun Y, Zhang Z, et al. Preparation, characterization, and pharmacokinetic study of a novel long-acting targeted paclitaxel liposome with antitumor activity. International Journal of Nanomedicine. 2020;15:553-71.
DOI: 10.2147/IJN.S228715

Jaafari MR, Hatamipour M, Alavizadeh SH, Abbasi A, Saberi Z, Rafati S, et al. Development of a topical liposomal formulation of Amphotericin B for the treatment of cutaneous leishmaniasis. International Journal for Parasitology. Drugs and Drug Resistance. 2019;11:156-65.
DOI: 10.1016/j.ijpddr.2019.09.004

Zhang W, Zhao X, Yu G, Suo M. Optimization of propofol loaded niosomal gel for transdermal delivery. Journal of Biomaterials Science. Polymer Edition. 2021;32(7):858-73.
DOI: 10.1080/09205063.2021.1877064

Singh RP, Narke RM, Jadhav PV. Formulation and evaluation of asenapine maleate loaded niosomes for the treatment of schizophrenia. Indian Journal of Pharmaceutical Education and Research. 2020;54(2):128-39.
DOI: 10.5530/ijper.54.2s.69

Hasani M, Sani NA, Khodabakhshi B, Arabi MS, Mohammadi S, Yazdani Y. Encapsulation of leflunomide (LFD) in a novel niosomal formulation facilitated its delivery to THP-1 monocytic cells and enhanced aryl hydrocarbon receptor (AhR) nuclear translocation and activation. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2019;27(2):635-44.
DOI: 10.1007/s40199-019-00293-0

Alshehri S, Hussain A, Altamimi MA, Ramzan M. In vitro, ex vivo, and in vivo studies of binary ethosomes for transdermal delivery of acyclovir: A comparative assessment. Journal of Drug Delivery Science and Technology. 2021;62:102390.
DOI: 10.1016/j.jddst.2021.102390.

Dave V, Bhardwaj N, Gupta N, Tak K. Herbal ethosomal gel containing luliconazole for productive relevance in the field of biomedicine. 3 Biotech. 2020;10(3):97.
DOI: 10.1007/s13205-020-2083-z

El-Shenawy AA, Abdelhafez WA, Ismail A, Kassem AA. Formulation and characterization of nanosized ethosomal formulations of antigout model drug (febuxostat) prepared by cold method: in vitro/ex vivo and in vivo assessment. AAPS Pharm Sci Tech. 2019;21(1):31.
DOI: 10.1208/s12249-019-1556-z.

Batool S, Zahid F, Ud-Din F, Naz SS, Dar MJ, Khan MW, et al. Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of cutaneous leishmaniasis: In vitro and in vivo analyses. Drug development and industrial pharmacy. 2021;47(3):440-53.
DOI: 10.1080/03639045.2021.1890768

Balata GF, Mennatullah FM, Elghamry HA, Shereen SA. Preparation and characterization of ivabradine hcl transfersomes for enhanced transdermal delivery. Journal of Drug Delivery Science and Technology. 2020;60:101921.
DOI: 10.1016/j.jddst.2020.101921

Wu PS, Li YS, Kuo YC, Tsai SJ, Lin CC. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules (Basel). 2019;24(3):600.
DOI: 10.3390/molecules24030600

Perera DJ, Hassan AS, Jia Y, Ricciardi A, McCluskie MJ, Weeratna RD, et al. Adjuvanted Schistosoma-mansoni Cathepsin B with sulfated lactosyl archaeol archaeosomes or addavax™ provides protection in a pre-clinical schistosomiasis model. Frontiers in Immunology. 2020;11:605288.
DOI: 10.3389/fimmu.2020.605288

Akache B, Deschatelets L, Harrison BA, Dudani R, Stark FC, Jia Y, et al. Effect of different adjuvants on the longevity and strength of humoral and cellular immune responses to the HCV envelope glycoproteins. Vaccines (Basel). 2019;7(4): 204.
DOI: 10.3390/vaccines7040204.

Vu Giang TT, Nguyen HT, Tran Yen TH, Pham BT, Pham Hue TM. Preparation and physicochemical evaluation of hydrogel containing quercetin phytosomes. Pharmaceutical Sciences Asia. 2021;48:122-38.
DOI: 10.29090/psa.2021.02.19.094

Alhakamy NA, Fahmy AU, Badr-Eldin SM, Ahmed OAA, Asfour HZ, Aldawsari HM, et al. Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. Pharmaceutics. 2020;12(4):346.
DOI: 10.3390/pharmaceutics12040346

Xu L, Xu D, Li Z, Gao Y, Chen H. Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells. Beilstein Journal of Nanotechnology. 2019;10:1933-42.
DOI: 10.3762/bjnano.10.189

Lakshmi VS, Manohar RD, Mathan S, Dharan SS. Formulation and evaluation of ufasomal topical gel containing selected non-steroidal anti-inflammatory drug (NSAIDs). Journal of Pharmaceutical Sciences and Research. 2021;13(1):38-48.

Bolla PK, Meraz CA, Rodriguez VA, Deaguero I, Singh M, Yellepeddi VK, et al. Clotrimazole loaded ufosomes for topical delivery: Formulation development and in-vitro studies. Molecules. 2019;24(17):3139.
DOI: 10.3390/molecules24173139

Uzunova K, Filipova E, Pavlova V, Vekov T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomedicine and Pharmacotherapy. 2020;131:110668.

DOI: 10.1016/j.biopha.2020.110668 Refaat H, Mady FM, Sarhan HA, Rateb HS, Alaaeldin E. Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. International Journal of Pharmaceutics. 2021;592: 120028.
DOI: 10.1016/j.ijpharm.2020.120028

Gupta PS, Krishnakumar V, Sharma Y, Dinda AK, Mohanty S. Mesenchymal stem cell derived exosomes: A nano platform for therapeutics and drug delivery in combating COVID-19. Stem Cell Reviews and Reports 2021;17(1):33–43.
DOI: 10.1007/s12015-020-10002-z

Itani R, Tobaiqy M, Al Faraj A. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics. 2020;10(13):5932-5942.
DOI: 10.7150/thno.46691

Varahachalam SP, Lahooti B, Chamaneh M, Bagchi S, Chhibber T, Morris K, Bolanos JF, Kim NY, Kaushik A. Nanomedicine for the SARS-CoV-2: State-of-the-Art and Future Prospects. Int J Nanomedicine. 2021;16:539-560.
DOI: org/10.2147/IJN.S283686

Yang D. Application of Nanotechnology in the COVID-19 Pandemic. International Journal Nanomedicine. 2021;16:623-649.
DOI: org/10.2147/IJN.S296383

Chintagunta AD, M SK, Nalluru S, N S SK. Nanotechnology: an emerging approach to combat COVID-19. Emergent materials 2021;4:119–130.
DOI: org/10.1007/s42247-021-00178-6

Thakur V, Ratho RK, Panda JJ. Respiratory delivery of favipiravir-tocilizumab combination through mucoadhesive protein-lipidic nanovesicles: prospective therapeutics against COVID-19. Virus disease 2021;17:32(1):1-6.
DOI: 10.1007/s13337-021-00679-2.

Gao J, Wang S, Dong X, Leanse LG, Dai Ti, Wang Z. Co-delivery of resolvin D1 and antibiotics with nanovesicles to lungs resolves inflammation and clears bacteria in mice. Communications Biology 2020;3:1234567890.
DOI: org/10.1038/s42003-020-01410-5

Lammers T, Sofias AM, van der Meel R, Schiffelers R, Storm G, Tacke F, Koschmieder S, Brümmendorf TH, Kiessling F, Metselaar JM. Dexamethasone nanomedicines for COVID-19. Nature Nanotechnology 2020;15(8):622-624.
DOI: 10.1038/s41565-020-0752-z

DI Pierro F, Khan A, Bertuccioli A, Maffioli P, Derosa G, Khan S, Khan BA, Nigar R, Ujjan I, Devrajani BR. Quercetin Phytosome as a potential candidate for managing COVID-19. Minerva Gastroenterology (Torino) 2021;67(2):190-195.
DOI: 10.23736/S1121-421X.20.02771-3

Rao L, Xia S, Xu W, Tian R, Yu G, Gu C, Pan P, Meng QF, Cai X, Qu D, Lu L, Xie Y, Jiang S, Chen X. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proceedings of the National Academy of Sciences of the United States of America 2020;117(44):27141-27147.
DOI: 10.1073/pnas.2014352117

Bilal J. Bioactive Virus-Mimicking Nanovesicles From Dendrimersomes: A Novel Approach to Understanding SARS-CoV-2 Host-Interactions to Better Design Therapeutics. Frontiers in Molecular Biosciences 2020;7:188.
DOI: 10.3389/fmolb.2020.00188

Caniglia JL, Guda MR, Asuthkar S, Tsung AJ, Velpula KK. A potential role for Galectin-3 inhibitors in the treatment of COVID-19. PeerJ 2020;8:e9392.
DOI: 10.7717/peerj.9392

Mahmood S, Kiong CK, Tham SC, Chien TC, Hilles RA, Venugopal RD. P EGylated Lipid Polymeric Nanoparticle–Encapsulated Acyclovir for In Vitro Controlled Release and Ex Vivo Gut Sac Permeation. AAPS PharmSciTech 2020;21: 285.
DOI: 10.1208/s12249-020-01810-0

Cai X, Prominski A, Lin Y, Ankenbruck N, Rosenberg J, Chen M, Shi J, Chang EB, Penaloza-MacMaster P, Tian B, Huang J. A Neutralizing Antibody-Conjugated Photothermal Nanoparticle Captures and Inactivates SARS-CoV-2. BioRxiv: The preprint server for biology 2020;11(30): 404624.
DOI: 10.1101/2020.11.30.404624