SOLITON DYNAMICS OF (3+1)-DIMENSIONAL QUANTUM SYSTEMS WITH POWER-LAW NONLINEAR INTERACTIONS

Main Article Content

YONGXING ZHANG
XIANBAO YU
XINYU ZHOU
JIYUAN GUO
YING WANG
WEI WANG

Abstract

We investigated the bright soliton dynamics for three-dimensional system with power-law nonlinearity. Based on nonlinear Schrodinger equation and the analytical result from one-dimensional scenario of the power-law system, we derived the bright soliton solution for the system under study via the self-similar method. Our theoretical work can be used to guide experimental study of power-law nonlinear system.

Keywords:
Power-law nonlinearity, soliton, self-similar method

Article Details

How to Cite
ZHANG, Y., YU, X., ZHOU, X., GUO, J., WANG, Y., & WANG, W. (2021). SOLITON DYNAMICS OF (3+1)-DIMENSIONAL QUANTUM SYSTEMS WITH POWER-LAW NONLINEAR INTERACTIONS. Journal of Applied Physical Science International, 13(3), 1-5. Retrieved from https://www.ikprress.org/index.php/JAPSI/article/view/6997
Section
Original Research Article

References

Serkin VN, Hasegawa A. Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett. 2000;85:4502.

Serkin VN, Hasegawa A, Belyaeva TL. Nonautonomous solitons in external potentials, Phys. Rev. Lett. 2007;98:074102.

Hao RY, Yang RC, Li L, Zhou GS. Solutions for the propagation of light in nonlinear optical media with spatially inhomogeneous nonlinearities, Opt. Commun. 2008;281:1256.

Camassa R, Hyman JM, Luce BP. Nonlinear waves and solitons in physical systems, Physica (Amsterdam). 1998;123D:1.

Kaup DJ, Newell AC. Solitons as particles, oscillators, and in slowly changing media—singular perturbation-theory. Proc. R. Soc. London A. 1978;361:413.

Jana S, Konar S. Phys. Jana, S., Konar, S. A new family of Thirring type optical spatial solitons via electromagnetically induced transparency, Phys. Lett. A. 2007;362:435

Belashov VY, Vladimirov SV. Solitary waves in dispersive complex media, Springer, Berlin; 2005.

Fei JX, Zheng CL. Exact Projective Excitations of a Generalized (3+1)-Dimensional Gross-Pitaevskii System with Varying Parameters,Chinese Journal of Physics. 2013; 51(2):200-208.

Davydova TA, Zaliznyak YA. Schrodinger ordinary solitons and chirped solitons: fourth-order dispersive effects and cubic-quintic nonlinearity. Physica D. 2001;156:260-282.

Hasegawa A, Tappert F. Transmission of Stationary Nonlinear Optical Pulse Narrowing and Solitions in Optical FibersAppl. Phys. Lett. 1973;23:171-172.

Zhou Y, Wang ML, Wang YM. Periodic wave solutions to coupled KdV equations with variable coefficients, Phys. Lett. A. 2003;308: 31.

Abdou MA. New periodic solutions nonlinearevolution equations using Exp-function method, Chaos Soliton. Fract. 2007; 31:95.

Brezzi F, Markowich PA. The three-dimensional wigner-poisson problem: Existence, uniqueness and approximation, Math. Meth. Appl. Sci. 1991;14:35.

Dalfovo F, Giorgini S, Pitaesvkii LP, Stringari S. A helium nanodrop bouncing off a wall, ,Rev. Mod. Phys. 1999;71:463.

Leggett AJ. Bose- Einstein condensation in the alkali gases, Rev. Mod. Phys. 2001;73: 307.

Sulem C, Sulem P. The nonlinear Schrodinger equation: Self-Focusing and Wave collapse. Chap. The Nonlinear Schrödinger Equation Self-Focusing and Wave Collapse

Prokhorov AV, Gladush MG, Gubin MY, Leksin AY, Arakelian SM. The optical control of spatial dissipative solitons in optical fibers filled with a cold atomic gas, Eur. Phys. J. D. 2014;68:158.

Li SF, Wang Y, Zhou Y, Guo JY, Gao GJ, Zhang YM. Soliton dynamics for one dimensional quantum system incorporating higher-order dispersion effect and nonlinear interactions, Chinese Journal of Physics. 2017;55:2436-2440.

Qi W, Liang ZX, Zhang AD. The stability condition and collective excitation of a trapped Bose-Einstein condensates with higher-order interactions, J. Phys. B. 2013;46: 175301.