Main Article Content



Mentha spp. (locally named mint or spearmint) is an important widespread vegetable crop in different countries around the world. It was infected by many fungal diseases including powdery mildew and anthracnose. Powdery mildew is an important and serious fungal disease on Mentha spp. caused by the fungus Golovinomyces biocellatus (Formerly Erysiphe cichoracearum) which overwinters on mint, stubble and many wild hosts. The disease symptoms represented by appearing white powdery spots on the leaves and stems of the plant. So, these spots become larger and denser when the disease progresses. This disease can be controlled by removing plant debris, removing infected plants from the former season and using many suitable fungicides. Anthracnose is another important fungal disease that infects Mentha spp. It caused by the fungus Sphaceloma menthae and Colletotrichum spp., which may be considered as seed-borne fungi. The disease symptoms include circular, oval or irregular spots which firstly appear yellow to brown, then they become black with the age progress. This disease can be controlled by using healthy plant materials, mechanical practices and applying some suitable fungicides. Both of these two diseases are very important and harmful to mint plants, significantly reduce the crop production and cause serious economic losses. So, powdery mildew is more harmful than anthracnose. In this technical document, we summarize the current knowledge of powdery mildew and anthracnose diseases epidemiology symptoms and signs, disease cycle, ecology and disease management.

Anthracnose disease, Colletotrichum spp., disease cycle, disease management, Erysiphe cichoracearum, Golovinomyces biocellatus, Mentha spp, powdery mildew disease, Sphaceloma menthae

Article Details

How to Cite
RHOUMA, A., SALIH, Y. A., ATALLAOUI, K., & KHRIEBA, M. I. (2021). TECHNICAL DOCUMENT ON POWDERY MILDEW AND ANTHRACNOSE OF Mentha SPP. Asian Journal of Plant and Soil Sciences, 6(1), 39-45. Retrieved from
Review Article


Harley RM, Atkins S, Budantsev AL, Cantino PD, Conn BJ, Crayer RJ, Harley MM, De Kok RPJ, Krestovskaja TV. The families and genera of vascular plants. In: Kubitzki K, Kadeit JW. (Eds.). Berlin, Germany: Springer-Verlag. 2004;167-275.

Kalemba D, Synowiec A. Agrobiological interactions of essential oils of two menthol mints: Mentha piperita and Mentha arvensis. Molecules. 2020;25(1):59.

Brickell C, Zuk JD. The American horticultural society: A-Z Encyclopedia of garden plants. New York: DK Publishing. 1997;1104.

Aflatuni A, Uustialo J, Ek S, Hohtola A. Variation in the amount of yield and the extract composition between conventionally produced and micro propagated peppermint and spearmint. J. Essent. Oil Res. 2005;17(1):66-70.

Bradly F, Rodalele S. All-new Encyclopedia of organic gardening. Emmaus, Pennsylvania: Rodute Press. 1992;390.

Brickell C, Cole T. The American horticultural society: A-Z Encyclopedia of plants and flowers. New York: DK Publishing. 2002;720.

Saric-Kundalic B, Fialova S, Dobes C, Olzant S, Tekelova D, Grancai D, Reznicek G, Saukel J. Multivariate numerical taxonomy of Mentha species hybrids, varieties and cultivars. Sci. Pharm. 2009;77(4):851-876.

De Judicibus M. Botanical net book. Custom book Center, University of Melbourne, Australia. 2011;232.

Webster J, Weber I. Introduction to fungi. 3rdEdition. New York, USA, UK: Cambridge University Press. 2007;841.

Garibaldi A, Bertetti D, Pensa P, Gullino ML. Powdery mildew caused by Golovinomyces biocellatus on spearmint (Mentha spicata) in Italy. Plant Dis. 2010; 94(9):1171.

Rodriguez R, Redman R. More than 400 million years of evolution and some plants still can't makeit on their own: Plant stress tolerance via fungal symbiosis. J. Exp. Bot. 2008;59(5):1109-1114.

Horst RK. Westcott's plant disease hand book. 7thedition. Springer Dordrecht, Berlin, Heidelberg, New York. 2008;1316.

Nimmi R, Christian AW, James ES, Thomas JG. First report of Golovinomyces monardae causing powdery mildew on spearmint in New Jersey. Plant Dis. 2019;103(10):2686.

Agrios NG. Plant pathology. 5thedition. USA: Elsevier Academic Press Publications. 2005;992.

Keinath AP, Virginia DB. Controlling powdery mildew on cucurbit rootstock seedlings in the greenhouse with fungicides and biofungicides. J. Crop Prot. 2012;42:338-344.

Purseglove JW. Tropical crops: Dicotyledons. Longman Scientific and Technical. John Wiley and Sons Inc., New York, USA. 1968;342.

Pscheidt JW, Ocamb CM. Pacific northwest plant disease management handbook, senior Eds. Oregon State University; 2021.

Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor. Appl. Genet. 2000;101(3): 407-414.

Cunfer BM. Powdery Mildew. FAO Plant Production and Protection Series. ISSN: 0259-2525. 2002.

Eliwa MA, El-Sheikh Aly MM, Abd-Alla HM, Galal AA. Efficacy of certain fungicide alternatives for controlling sugar beet powdery mildew. J. Phytopathol. Pest Manag. 2018; 5(1):76-87.

Bélanger RR, Labbé C. The powdery mildews, a comprehensive treatise. Control of powdery mildews without chemicals: prophylactic and biological alternatives for horticultural crops. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW. (Eds.). USA: APS Press, St. Paul, MN. 2002;256-267.

Gado EAM. Impact of treatment with some plant extracts and fungicides on sugar beet powdery mildew and yield components. Aust. J. Basic Appl. Sci. 2013;7(1):468-472.

Kapoor JN. Erysiphe cichoracearum. CMI descriptions of pathogenic fungi and bacteria. Commonw. Mycol. Inst., Kew, Surrey, England. 1967;152:2.

Mukerji KG. Sphaerotheca macularis. CMI descriptions of pathogenic fungi and bacteria. Commonw. Mycol. Inst., Kew, Surrey, England. 1968;188:2.

Naqvi SAMH. Diseases of fruits and vegetables diagnosis and management. New York, London, Moscow: Kluwer Academic Publishers. 2004;691.

Fan XL, Barreto RW, Groenewald JZ, Bezerra JDP, Pereira OL, Cheewangkoon R, Crous PW. Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoë (Myriangiales, Dothideomycetes). Stud. Mycol. 2017;87:1-41.

Jenkins AE. New species of Sphaceloma on Aralia and Mentha. J. Wash. Acad. Sci. 1937;27:412-414.

Deising HB, Werner S, Wernitz M. The role of fungal appressoria in plant infection. Microbes Infect. 2000;2:1631-1641.

Olivares B. Tropical conditions of seasonal rain in the dry-land agriculture of Carabobo, Venezuela. La Granja: J. Life Sci. 2018;27(1):86-102.

Olivares B, Hernández R. Regional analysis of homogeneous precipitation areas in Carabobo, Venezuela. Rev. Lasallista Investig. 2019; 16(2):90-105.

Olivares B, Chirinos J. Importancia de la Agrometeorología en la sanidad vegetal. Revista INIA-Divulga. 2009;14:43-45.

Olivares B, Rey JC, Lobo D, Navas-Cortés JA, Gómez JA, Landa BB. Fusarium Wilt of bananas: a review of agro-environmental factors in the Venezuelan production system affecting its development. Agronomy. 2021; 11(5):986.

Olivares B, Hernandez R, Arias A, Molina JC, Pereira Y. Eco-territorial adaptability of tomato crops for sustainable agricultural production in Carabobo, Venezuela. Idesia. 2020;38(2):95-102.

Olivares B, Hernández R. Ecoterritorial sectorization for the sustainable agricultural production of potato (Solanum tuberosum L.) in Carabobo, Venezuela. J. Agric. Sci. Technol. 2019;20(2):339-354.

Olivares B, Hernández R, Arias A, Molina JC, Pereira Y. Zonificacióna groclimática del cultivo de maíz para la sostenibilidad de la producción agrícola en Carabobo, Venezuela. Revista Universitaria de Geografía. 2018; 27(2):139-159.

Bertorelli M, Olivares BO. Population fluctuation of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in sorghum cultivation in Southern Anzoategui, Venezuela. J. Agric. Univ. P. R. 2020;104(1):1-16.


Chirinos J, Olivares B. Biological effectiveness of plant extracts in in vitro control of the phytopathogenic Xanthomona bacterium. Multiciencias. 2013;13(2):115-121.

Casana S, Olivares B. Evolution and trend of surface temperature and wind speed (1994 - 2014) at the Parque Nacional Doñana, Spain. Rev. Fac. Agron. 2020;37(1):1-25.

Olivares B, Paredes F, Rey J, Lobo D, Galvis-Causil S. The relationship between the normalized difference vegetation index, rainfall, and potential evapotranspiration in a banana plantation of Venezuela. Sains Tanah J. Soil Sci. Agroclim. 2021;18(1):58-64.

Baines RC. Mint anthracnose. Phytopathology. 1938;43:178-180.

Dermelj V. Untersuchungenüber Sphaceloma menthae Jenkins, den Erreger der Pfefferminzanthraknose. Phytopathol. Z. 1960; 40(2):151-186.

Coombe BG. Control of black spot of Sultanas. J. Dcp. Agric. S. Austr. 1954;5:29-31.

Taylor RH. Black spot of the vine: New recommendations for control. Government Printer, South Africa; 1954.

Andrade AC. Aspectos do emprego dos fongicida sem 1957. Biol. 1958;24:55-63.

Benomari FZ, Andreu V, Kotarba J, Dib MEA, Bertrand C, Muselli A, Costa J, Djabou N. Essential oils from Algerian species of Mentha as new bio-control agents against phytopathogen strains. Environ. Sci. Pollut. Res. Int. 2018;25(30):29889-29900.

Hsouna AB, Touj N, Hammami I, Dridi K, Al-Ayed AS, Hamdi N. Chemical composition and in vivo efficacy of the essential oil of Mentha piperita L. in the suppression of crown gall disease on tomato plants. J. Oleo. Sci. 2019;1:68(5):419-426.

Guo K, Sui Y, Li Z, Huang Y, Zhang H, Wang W. Colonization of Trichoderma viride Tv-1511 in peppermint (Mentha × piperita L.) roots promotes essential oil production by triggering ROS-mediated MAPK activation. Plant Physiol. Biochem. 2020;151:705-718.

De Oliveira KÁR, Berger LRR, de Araújo SA, Câmara MPS, de Souza EL. Synergistic mixtures of chitosan and Mentha piperita L. essential oil to inhibit Colletotrichum species and anthracnose development in mango cultivar Tommy Atkins. Food Microbiol. 2017;66:96-103.