• Home
  • Register
  • Login

Asian Journal of Mathematics and Computer Research

  • About
    • About the Journal
    • Submissions & Author Guidelines
    • Articles in Press
    • Editorial Team
    • Editorial Policy
    • Publication Ethics and Malpractice Statement
    • Contact
  • Archives
  • Indexing
  • Submission
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 29 [Issue 1]
  4. Original Research Article

ENERGY OF COMBINATORIAL MATRICES OF GRAPHS

  •  B. K. DIVYASHREE
  •  R. JAGADEESH
  •  . SIDDABASAPPA

Asian Journal of Mathematics and Computer Research, Page 9-26

Published: 6 February 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Let G= (V, E) be a simple connected graph. In this paper, we have evaluated the energies of combinatorial matrices.  We have two types of path defined matrices that is distance path and detour path the elements of these matrices are found combinatorially from the traditional distance and detour matrices. Here, we have calculated energies of standard graphs for both distance path and detour path matrices. Upper and lower bounds for these combinatorial matrices are also determined.


Keywords:
  • Combinatorial matrices
  • graphs
  • energy
  • matrix
  • PDF Requires Subscription or Fee (USD 30)
  •  PDF (INR 2100)

How to Cite

DIVYASHREE, B. K., JAGADEESH, R., & SIDDABASAPPA, . (2022). ENERGY OF COMBINATORIAL MATRICES OF GRAPHS. Asian Journal of Mathematics and Computer Research, 29(1), 9-26. Retrieved from https://www.ikprress.org/index.php/AJOMCOR/article/view/7574
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Gutman I. The energy of a graph. Ber. Math-Statist. Sekt. Forschungszentrum Graz. 1978;103:1–22.

Cvetkovi´c D, Gutman I (Eds.). Selected Topics on Applications of Graph Spectra, Math. Inst., Belgrade; 2011.

Cvetković D, Gutman I. The computer system GRAPH: A useful tool in chemical graph theory. J. Comput. Chem. 1986;7:640–644.

Gutman I, Li X, Zhang J. In analysis of complex networks. From Biology to Linguistics, M. Dehmer, F. Emmert-Streib, Eds., Wiley-VCH: Weinheim. 2009;145.

Mircea V. Diudea. Walk Numbers 〖e_M〗^W: Wiener-Type Numbers of Higher Rank, Journal of Chemical Information and Computer Sciences. 1996;36(3):535-540.

Yu A, Lu M, Tian F. New upper bounds for the energy of graphs. MATCH Commun. Math. Comput. Chem. 2005;53:441–458.

McClelland BJ. Properties of the latent roots of a matrix: The estimation of π-electron energies. J. Chem. Phys. 1971;54:640-643.

Graovac A, Gutman I, Trinajsti´c N. Topological approach to the chemistry of conjugated molecules. Springer–Verlag, Berlin; 1977.

Gutman I. The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer–Verlag, Berlin. 2001;196–211.

Mircea V. Diudea, Gabriel Katona, Istvan Lukovits Acta, Nenad Trinajstic. Detour and cluj-detour indices. , Croat. Chem. Acta. 1998;71:459-471.

Gutman I, Polansky OE. Mathematical concepts in organic chemistry, Springer–Verlag, Berlin; 1986.
  • Abstract View: 116 times
    PDF Download: 1 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission
Subscription

Login to access subscriber-only resources.

Information
  • For Readers
  • For Authors
  • For Librarians


Terms & Condition | Privacy Policy | Help | Team | Advertising Policy
Copyright @ 2000-2021 I.K. Press. All rights reserved.