PLANT GROWTH, PHYSIOLOGICAL RESPONSE AND OSMOTIC ADJUSTMENT OF WILD Bituminaria bituminosa (L.) STIRTON ACCESSIONS UNDER SALT STRESS

Main Article Content

LOUBNA ZARAT
CHAOUKI ALFAIZ
NADIA CHIADMI
RAJAE KALLIDA
FATIMA GABOUN
MOHAMED IBRIZ

Abstract

Salinity is one of the serious limiting factors for plant growth and productivity, which is accentuated by the ongoing climate change. Bituminaria bituminosa (L.) Stirton genotypes are the most promising new option for drought-prone areas with large ecological adaptation to climatic changes. As no information is available about the response of B. bituminosa to salinity, the aim of this research was to study salt tolerance of some B. bituminosa (L.) genotypes, investigating the main agro-physiological and biochemical response. Six B. bituminosa genotypes (Ourika, Oujda, Chaouen, Sefrou, Fez, Meknes) grown in a greenhouse were tested. Control plants were grown in a salt-free nutrient medium, while treated plants were supplemented with three NaCl concentrations (3, 6 and 9 g/l) in the solution and were irrigated every day. There were three replications and pots were arranged according to the split plot design with a randomized complete block. The effects of salt stress on growth, physiological and biochemical parameters were determined. The Data was subjected to a two-way analysis of variance. The main results showed a significant effect (P<.001) of salt treatment on vegetative growth by decreasing plant height by 41%, leaf number by 51%, fresh biomass yield by 56% and dry biomass yield by 67% at severe salinity. Salt stress decreased also the relative water content by 32%, net photosynthetic rate by 46%, stomatal conductance by 72% and chlorophyll fluorescence by 17%, but increased leaf proline and soluble carbohydrates contents by 212% and 158% respectively at severe salinity conditions. Among the studied genotypes, Sefrou seemed to be the most productive and tolerant genotype to salinity with high biomass yield, high photosynthetic and PSII activity and high relative water content but with a less accumulation of compatible solutes (proline and soluble carbohydrates), whereas Oujda revealed to be a sensitive genotype with high proline and soluble carbohydrates accumulation, suggesting that accumulation of compatible solutes (proline and soluble carbohydrates) could not be related to B. bituminosa osmotic adjustment and salt tolerance. These findings revealed the key pathways for screening genotypes and providing knowledge about stress tolerance mechanisms, which could be useful to plant breeders for selecting and developing salt-tolerant genotypes.

Keywords:
Salinity, climate change, growth, photosynthesis, PSII, proline, salt tolerance.

Article Details

How to Cite
ZARAT, L., ALFAIZ, C., CHIADMI, N., KALLIDA, R., GABOUN, F., & IBRIZ, M. (2020). PLANT GROWTH, PHYSIOLOGICAL RESPONSE AND OSMOTIC ADJUSTMENT OF WILD Bituminaria bituminosa (L.) STIRTON ACCESSIONS UNDER SALT STRESS. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 21(1-2), 59–69. Retrieved from http://www.ikprress.org/index.php/PCBMB/article/view/4926
Section
Original Research Article

References

Gisbert C, Dabauza M, Correal E, Swennen R, Panis B. Cryopreservation of Bituminaria bituminosa varieties and hybrids. Cryobiology. 2015;71:279–285.
Available:http://dx.doi.org/10.1016/j.cryobiol.2015.07.011

Barbera M, Flores PM, Castanon IRJ, Diazavila E, Ventura RM. Germination characteristics of tedera (Bituminaria bituminosa var. bituminosa). AGROFOR International Journal. 2017;2(1).
Available:http://dx.doi.org/10.7251/AGRENG1701139B

Real D, Verbyla A. Maximizing genetic gains using a plant model in the Tedera (Bituminaria bituminosa var. albomarginata and var. crassiuscula) breeding program in Australia in Porqueddu C. (ed.), Ríos S. (ed.). The contributions of grasslands to the conservation of Mediterranean biodiversity. Zaragoza: CIHEAM / CIBIO / FAO / SEEP. (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 92). 2010; 87-95.
Available:https://www.researchgate.net/publication/266180044_Maximizing_genetic_
gains_using_a_plant_model_in_the_Tedera_Bituminaria_bituminosa_var_albomarginata
_and_var_crassiuscula_breeding_program_in_Australia

Tava A, Pecetti L, Ricci M, Pagnotta MA, Russi L. Volatile compounds from leaves and flowers of Bituminaria bituminosa (L.) Stirt. (Fabaceae) from Italy. Flavour and Fragrance Journal Flavour Fragr. J. 2007; 22:363-370.
DOI: 10.1002/ffj.1806

Llorent-Martínez JE, Spínola V, Gouveia S, Castilho CP. HPLC-ESI-MSn characteriza-tion of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Industrial Crops and Products. 2015;69:80–90.
Available:http://dx.doi.org/10.1016/j.indcrop.2015.02.014

Correal E, Hoyos A, Ríos S, Méndez P, Real D, Sowball R, Costa J. Seed production of Bituminaria bituminosa: Size, production, retention and germination capacity of the legumes. In: Porqueddu C. (ed.), Tavares de Sou sa MM (ed.). Sustainable Mediterranean grass lands and their multi-functions. Zaragoza: CIHEAM/FAO/ENMP/SPPF. (Option s Méditerranéennes: Série A. Séminaires Méditerranéens ; n. 79). 2008;379-383.
Available:https://www.researchgate.net/publication/242385512_Seed_production_of_Bituminaria_
bituminosa_Size_production_retention_and_germination_capacity_of_the_legumes

Jahandiez E, Maire R. Catalogue des plantes du Maroc (Spermatophytes et Ptéridophytes). Tome deuxième Dicotylédones Archichlamydées. Alger imprimerie Minerva. 1932;404.

Foster K, Ryan MH, Real D, Ramankutty P, Lambers H. Seasonal and diurnal variation in the stomatal conductance and paraheliotropism of tedera (Bituminaria bituminosa var. albomarginata) in the field. Functional Plant Biology. 2013;40(7):719-729.
Available:https://doi.org/10.1071/FP12228

Shan L, Zhang SQ, Li WR. Productivity and drought resistance of alfalfa. Journal of Agricultural Science and Technology. 2008;10:12-17.
Available:https://www.researchgate.net/publication/292771172_Productivity_and_drought_
resistance_of_alfalfa

Brullo S, Brullo C, Cambria S, Cristaudo A, Del Galdo GG. Bituminaria anti atlantica (Psoraleeae, Fabaceae), a new species from Morocco. Phyto Keys. 2017; 85:109–124.
DOI: 10.3897/phytokeys.85.12288

Mousavi S, Regni L, Bocchini M, Mariotti R, Cultrera NGM, Mancuso S, Googlani J, Chakerolhosseini MR, Guerrero C, Albertini E, Baldoni L, Proietti P. Physiological, epigenetic and genetic regulation in some olive cultivars under salt stress. Scientific Reports. 2019;9: 1093.
Available:https://doi.org/10.1038/s41598-018-37496-5

Martínez-Fernández D, Walker DJ, Romero P, Correal E. The physiology of drought tolerance in Tedera (Bituminaria bituminosa). In: Porqueddu C. (ed.), Ríos S. (ed.). The contributions of grasslands to the conservation of Mediterranean biodiversity. Zaragoza: CIHEAM / CIBIO / FAO / SEEP. (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 92). 2010; 155-159.
Available:http://om.ciheam.org/om/pdf/a92/00801235.pdf

Gulumser E, Basaran U, Acar Z, Ayan I, Mut H. Determination of some agronomic traits of Bituminaria bituminosa accessions collected from Middle Black Sea Region. In: Porqueddu C. (ed.), Ríos S. (ed.). The contributions of grasslands to the conservation of Mediterranean biodiversity. Zaragoza: CIHEAM/CIBIO/FAO/SEEP. (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 92). 2010; 105-108.
Available:https://www.researchgate.net/publication/267225296_Determination_of_some_
agronomic_traits_of_Bituminaria_bituminosa_accessions_collected_from_Middle_Black_Sea_Region

Ibriz M, Thami Alami I, Amotfi S, Al Faiz C, Rachidai A. Production des luzernes des régions pré-sahariennes du Maroc en conditions salines. Fourrages. 2004;180: 527-540.
Available:https://www.researchgate.net/publication/272174048_Production_des_luzernes_
Medicago_sativa_L_des_regions_pre-sahariennes_du_Maroc_en_conditions_salines

Peng Z, He S, Sun J, Pan Z, Gong W, Lu Y, Du X. Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings. Scientific Reports. 2016;6:34548.
DOI: 10.1038/srep34548

Abdul Qados MSA. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences. 2011;10: 7–15.
Available:https://doi.org/10.1016/j.jssas.2010.06.002

Parihar P, Singh S, Singh R, Singh VP, Prasad SM. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015;22: 4056–4075.
DOI: 10.1007/s11356-014-3739-1

Varone L, Catoni R, Bonito A, Gini E, Gratani L. Photochemical performance of Carpobrotus edulis in response to various substrate salt concentrations. South African Journal of Botany. 2017;111:258–266.
Available:http://dx.doi.org/10.1016/j.sajb.2017.03.035

Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002; 25:239–250.
Available:https://doi.org/10.1046/j.0016-8025.2001.00808.x

Bojović B, Đelić G, Topuzović M, Stanković M. Effect of NaCl on seed germination in some species from families Brassicaceae and Solanaceae. Kragujevac J. Sci. 2010;32:83-87.
[UDC581.142:582.683.2:582.951.4:546.33’131]

Barrs HD. Determination of water deficits in plant tissue. In: Kozlowski, T.T. (Ed) Water deficits and plant growth. New York, Academic Press. 1968;1:235-368.

Benhmimou A, Ibriz M, Al Faïz C, Gaboun F, Shaimi N, Amchra FZ, Lage M. Effects of water stress on growth, yield, quality and physiological responses of two stevia (Stevia rebaudiana Bertoni) varieties in Rabat region, Morocco. Asian J Agri & Biol. 2018;6(1):21-34.
Available:https://www.researchgate.net/publication/324150164_Effects_of_water_stress_on_
growth_yield_quality_and_physiological_responses_of_two_stevia_Stevia_rebaudiana_Bertoni_
varieties_in_Rabat_region_Morocco

Maxwell K, Johnson GN. Chlorophyll fluorescence – A practical guide. J Exp Bot. 2000;51(345):659-68.
DOI: 10.1093/jxb/51.345.659

Dreier W, Göring M. Der einfluss hoher salzkonzentration auf verschieden physiol-logische parameter von maiswurze ln. Win Z. der HU Berlin, Nath. Naturwiss. R. 1974;23:641-644.

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1959;28(3):350-356.
DOI: 10.1021/ac60111a017

Raul L, Andres O, Armado L, Bernardo M, Enrique T. Response to salinity of three grain legumes for potential cultivation in arid areas (plant nutrition). Soil Sci. Plant Nutr. 2003;49(3):329–336.
Available:https://doi.org/10.1080/00380768.2003.10410017

Al-Daej MI. Salt tolerance of some tomato (Solanum lycoversicum L.) cultivars for salinity under controlled conditions. Am. J. Plant Physiol. 2018;13(2):58-64.
DOI: 10.3923/ajpp.2018.58.64

Munns R, Passioura JB, Colmer TD, Byrt CS. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytologist; 2019.
Available:https://doi.org/10.1111/nph.15862

Azizi S, Tabari M, Striker GG. Growth, physiology, and leaf ion concentration responses to long-term flooding with fresh or saline water of Populus euphratica. South African Journal of Botany. 2017;108: 229–236.
Available:http://dx.doi.org/10.1016/j.sajb.2016.11.004

Abdelraheem A, Esmaeili N, O’Connell M, Zhang J. Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops & Products. 2019;130: 118–129.
Available:https://doi.org/10.1016/j.indcrop.2018.12.070

Oliveira F, de Morais MB, de Souza Silva ME, Saraiva YKF, de Mesquita Arruda MV, e Silva JNC, de Albuquerque CC. Ecophysiological response of Lippia gracilis (Verbanaceae) to duration of salt stress. Ecotoxicology and Environmental Safety. 2019;178:202–210.
Available:https://doi.org/10.1016/j.ecoenv.2019.04.016

Regni L, Del Pino AM, Mousavi S, Palmerini CA, Baldoni L, Mariotti R, Mairech H, Gardi T, D’Amato R, Proietti P. Behavior of four olive cultivars during salt stress. Front. Plant Sci. 2019;10: 867.
DOI: 10.3389/fpls.2019.00867

Karimi S, Eshghi S, Karimi S, Hasan-Nezhadian S. Inducing salt tolerance in sweet corn by magnetic priming. Acta Agric. Sloven. 2017;109(1):89–102.
Available:http://dx.doi.org/10.14720/aas.2017.109.1.09

Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA. Plant responses to salt stress: Adaptive mechanisms (Review). Agronomy. 2017;7:18.
DOI: 10.3390/agronomy7010018

Najar R, Aydi S, Sassi-Aydi S, Zarai A, Abdelly C. Effect of salt stress on photosynthesis and chlorophyll fluore-scence in Medicago truncatula, Plant Bio-systems - An International Journal Dealing with all Aspects of Plant Biology; 2018.
DOI: 10.1080/11263504.2018.1461701

Luo J, Huang Ch, Peng F, Xue X, Wang T. Effect of salt stress on photosynthesis and related physiological characteristics of Lycium ruthenicum Murr, Acta Agri-culturae Scandinavica, Section B-Soil & Plant Science; 2017.
DOI: 10.1080/09064710.2017.1326521

Kibria MG, Hossain M, Murata Y, Hoque MA. Antioxidant defense mechanisms of salinity tolerance in rice genotype. Rice Sci. 2017;24(3):155–162.
Available:https://doi.org/10.1016/j.rsci.2017.05.001

El Kahkahi R, Mouhajir M, Bachir S, Lemrhari A, Zouhair R, AitChitt M, Errakhi R. Morphological and physiological analysis of salinity stress response of carob (Ceratonia siliqua L.) in Morocco. Science International. 2015;3:73-81.
DOI: 10.17311/sciintl.2015.73.81

Qirat M, Shahbaz M, Perveen S. Beneficial role of foliar-applied proline on carrot (daucuscarota L.) under saline conditions. Pak. J. Bot. 2018;50(5):1735–1744.
Available:https://www.researchgate.net/publication/325869890_Beneficial_role_of_foliar-applied_proline_on_carrot_Daucus_carota_L_under_saline_conditions