MOLECULAR DETECTION AND PHYLOGENY OF Peronospora variabilis Gäum., THE CAUSAL AGENT OF DOWNY MILDEW DISEASE OF QUINOA AT DIFFERENT GROWTH STAGES

Main Article Content

EIHAB MOHAMED TAHA

Abstract

Downy mildew disease of quinoa caused by Peronospora variabilis is a serious threat which greatly reduces yield. The identification of the source of the primary infection at the early growth stages of quinoa is necessary to manage the spread of this pathogen. Hence, a conventional detection method based on polymerase chain reaction (PCR) was applied to detect the DNA of P. variabilis in the tissues of the different organs of quinoa plants (radicle or root; cotyledon or leaf; hypocotyl or stem) at the different growth stages (5-, 10-, 15- and 21-days old plants) and in inflorescences (flowers and their axes) at 60 and 80 days old. Twelve composite quinoa seedling samples were subdivided into different organs at the different growth stages. P. variabilis was detected in cotyledon/leaf tissues (10/12; 83%), hypocotyl/stem tissues (41.6%; 5/12) and radicle/root was the least positive (1/12; 0.8%) for presence of the pathogen. Moreover, the PCR showed that the pathogen was detected in the flowers and in their axes at the ages of 60 and 80 days. The internal transcribed spacer (ITS) and cytochrome c oxidase subunit 2 (COX2) regions were examined. Phylogenetic analyses confirmed that P. variabilis (EGDM1) was the causal agent of downy mildew affecting quinoa in Egypt and genetically similar to the United States and China lineage (COX2 Maximum likelihood tree). Downy mildew pathogen was detected in different organs of quinoa plant at early growth stages and inflorescences. Hence, the pathogen can spread systemically in quinoa tissues.

Keywords:
Peronospora variabilis Gäum., downy mildew disease, molecular detection, phylogeny, quinoa.

Article Details

How to Cite
TAHA, E. M. (2019). MOLECULAR DETECTION AND PHYLOGENY OF Peronospora variabilis Gäum., THE CAUSAL AGENT OF DOWNY MILDEW DISEASE OF QUINOA AT DIFFERENT GROWTH STAGES. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 20(23-24), 1189–1200. Retrieved from http://www.ikprress.org/index.php/PCBMB/article/view/4842
Section
Original Research Article

References

Bazile D, Fuentes, F, Mujica A. Historical perspectives and domestication. In: Bhargava A, Srivastava S (eds) Quinoa: Botany, Production and Uses, (Wallingford: CABI). 2013;16–35.

Vega‐Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd), an ancient Andean grain: a review. J Sci Food Agric. 2010;90:2541–2547.

Bastidas EG, Roura R, Rizzolo DA, Massanés T, Gomis R. Quinoa (Chenopodium quinoa Willd.), from nutritional value to potential health benefits: an integrative review. J Nut Food Sci. 2016;6(3):497.

González JA, Eisa S, Hussin SA, Prado FE. Quinoa: An Incan crop to face global changes in agriculture. In: Murphy, KM, Matanguihan, J (Eds) Quinoa: Improve-ment and sustainable production. Hoboken, NJ: John Wiley & Sons; 2015.

Bazile D, Jacobsen SE, Verniau A. The global expansion of quinoa: Trends and limits. Front Plant Sci. 2016b;7:622.

Bhargava A, Shukla S, Ohri D. Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Res. 2007;101(1):104-16.

Bhargava A, Shukla, S, Ohri D. Chenopodium quinoa an Indian perspective. Ind Crops Prod. 2006;23:73-87.

FAO (Food and Agricultural Organization). Launch of the international year of Quinoa: UN celebrates Andean super food; 2013.
Available:http://www.fao.org/quinoa-2013/press-room/news/detail/en/
[Accessed on July 1, 2019]

Jacobsen SE. The worldwide potential of quinoa (Chenopodium quinoa Willd.). Food Rev Int. 2003;19:167-177.

Choi YJ, Danielsen S, Lübeck M, Hong SB, Delhey R, Shin HD. Morphological and molecular characterization of the causal agent of downy mildew on quinoa (Chenopodium quinoa). Mycopathologia. 2010;169(5):403-412.

Danielsen S, Mercado VH, Ames T, Munk L. Seed transmission of downy mildew (Peronospora farinosa f. sp. chenopodii) in quinoa and effect of relative humidity on seedling infection. Seed Sci Tech. 2004;32: 91–8.

Tewari, JP, Boyetchko SM. Occurrence of Peronospora farinosa f. sp. chenopodii on quinoa in Canada. Can Plant Dis Surv. 1990;70:127-128.

Danielsen, S, Jacobsen, SE Hockenhull J. First report of downy mildew of quinoa caused by Peronospora farinosa f. sp. chenopodii in Denmark. Plant Dis. 2002; 86:1175.

Kumar A, Bhargava A, Shukla S, Singh HB, Ohri D. Screening of exotic Chenopodium quinoa accessions for downy mildew resistance under mid-eastern conditions of India. Crop Prot. 2006;25: 879-889.

Testen AL, McKemy JM, Backman PA. First report of quinoa downy mildew caused by Peronospora variabilis in the United States. Plant Dis. 2012;96:146.

Choi YJ, Choi IY, Kim JS, Shin HD. First report of quinoa downy mildew caused by Peronospora variabilis in Republic of Korea. Plant Dis. 2014;7:1003.

Hui Y, Zhou JB, Chang FJ, Hong L, Gong LJ, Zhao XJ. Identification of pathogen causing downy mildew of Chenopodium quinoa. Acta Phytopathologica Sinica. 2018;48(3):413-417.

Danielsen S, Jacobsen SE, Echegaray J, Ames T. Impact of downy mildew on the yield of quinoa. CIP Program Rep 1999-2000. 1999;397-401.

Danielsen S, Ames T. Mildew (Peronospora farinosa) of quinoa (Chenopodium quinoa) in the Andean region: Practical manual for the study of the disease and pathogen. International Potato Center; Provo, UT: Brigham Young University; 2004.

Kitz L. Evaluation of downy mildew (Peronospora farinosa F. sp. chenopodii) resistance among quinoa genotypes and investigation of P. farinosa growth using scanning electron microscopy. Dissertation, University of Brighan Young; 2008.

Crandall SG, Rahman A, Quesada-Ocampo LM, Martin FN, Bilodeau GJ, Miles TD. Advances in diagnostics of downy mildews: Lessons learned from other oomycetes and future challenges. Plant Dis. 2018;102(2):265-75.

Choi YJ, Beakes G, Glockling S, Kruse J, Nam B, Nigrelli L, Ploch S, Shin HD, Shivas RG, Telle S, Voglmayr H. Towards a universal barcode of oomycetes – A comparison of the cox1 and cox2 loci. Mol Ecol Resour. 2015a;15(6):1275-88.

Thines M, Voglmayr H, Göker M. Taxonomy and phylogeny of the downy mildews (Peronosporaceae). In: Oomycete Genetics and Genomics: Diversity, Interactions and Research Tools. Weinheim: Wiley-VCH; 2009.

Cohen Y, Rubin AE, Galperin M, Ploch S, Runge F, Thines M. Seed transmission of Pseudoperonospora cubensis. PLoS One. 2014;9(10):e109766.

Thangavel T, Jones S, Scott JB, Livermore M, Wilson CR. Detection of two Peronospora spp., responsible for downy mildew, in opium poppy seed. Plant Dis. 2018;102(11):2277-84.

Subbarao CS, Anchieta A, Ochoa L, Dhar N, Kunjeti SG, Subbarao KV, Klosterman SJ. Detection of Latent Peronospora effusa Infections in Spinach. Plant Dis. 2018; 1102(9):1766-71.

Mudiyanselage AM, Ridgway HJ, Walter M, Jaspers MV, Jones EE. Heat and fungicide treatments reduce Peronospora sparsa systemic infection in boysenberry tissue culture. Eur J Plant Pathol. 2019; 153(2):651-6.

Testen AL, del Mar Jiménez-Gasco M, Ochoa JB, Backman PA. Molecular detection of Peronospora variabilis in quinoa seed and phylogeny of the quinoa downy mildew pathogen in South America and the United States. Phytopathology. 2014;104(4):379-86.

Danielsen S, Lübeck M. Universally Primed-PCR indicates geographical variation of Peronospora farinosa ex. Chenopodium quinoa. J basic Microbiol. 2010; 50(1):104-9.

Bazile D, Pulvento C, Verniau A, Al-Nusairi MS, Ba D, Breidy J, Hassan L, Mohammed MI, Mambetov O, Otambekova M, Sepahvand NA. Worldwide evaluations of quinoa: Preliminary results from post international year of quinoa FAO projects in nine countries. Front Plant Sci. 2016a; 7:850.

EL-Assiuty EM, Fawziya M Bekheet Zeinab M Fahmy. First record of downy mildew of quinoa in Egypt. Egypt J Agric Res. 2014;92 (3).

Khalifa W, Thabet M. Variation in downy mildew (Peronospora variabilis Gäum) resistance of some quinoa (Chenopodium quinoa Willd) cultivars under Egyptian conditions. Middle East J. 2018;7(2):671-82.

Korbie DJ, Mattick JS. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat protoc. 2008;3(9): 1452.

EL-Assiuty EM, Taha, EM, Zeinab M. Fahmy, Fahmy MF. Histological and molecular detections of Peronospora variabilis Gäum oospores in seeds of Quinoa (Chenopodium quinoa L.). Egypt J Exp Biol (Bot). 2019;15(2):197–203.

Cooke DE, Drenth A, Duncan JM, Wagels G, Brasier CM. A molecular phylogeny of Phytophthora and related Oomycetes. Fungal Genet Biol. 2000;30:17-32.

White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylo-genetics. In PCR Protocols: A Guide to Methods and Applications (M A Innis, D H Gelfand, JJ Sninsky, TJ White, Eds.). Academic Press, San Diego. 1990;315– 322.

Hudspeth DSS, Nadler SA, Hudspeth MES. A cox2 molecular phylogeny of the Peronosporomycetes. Mycologia. 2000;92: 674-684.

Hudspeth DSS, Stenger D, Hudspeth MES. A cox2 phylogenetic hypothesis for the downy mildews and white rusts. Fungal Divers. 2003;13:47-57.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol Biol. 1990;215:403–410.

Edgar, RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32: 1792-1797.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X. Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018; 35(6):1547-9.

Hasegawa M, Kishino H, Yano T. Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22: 160-174.

Alandia S, Otazú V, Salas B. Enfermedades. In: Tapia M, Gandarillas H, Alandia S, ardozo AC, Mujica A, Ortiz R, Otazú V, Rea J, Salas B, Sanabria E (eds) Quinua y kañiwa, Editorial IICA, Bogotá, Colombia; 1979.

Testen, AL. Microbial approaches to support Andean quinoa production. (Dissertation), the Pennsylvania State University; 2012.

Cohen Y, Ben Naim Y, Falach L, Rubin AE. Epidemiology of basil downy mildew. Phytopatholog. 2017;107:1149-1160.

Garibaldi A, Minuto G, Bertetti D, Gullino ML. Seed transmission of Peronospora sp. of basil. J Plant Dis Protect. 2004;111:465-469.

Montes-Borrego M, Landa BB, Navas-Cortés JA, Muñoz-Ledesma FJ, Jiménez-Díaz RM. Role of oospores as primary inoculum for epidemics of downy mildew caused by Peronospora arborescens in opium poppy crops in Spain. Plant Pathol. 2009;58:1092-1103.

Salgado-Salazar C, Shiskoff N, Daughtrey M, Palmer CL, Crouch JA. Downy mildew: A serious disease threat to rose health worldwide. Plant Dis. 2018;102(10):1873-82.

Singh D, Mathur SB. Histopathology of seed-borne infections. CRC Press LLC. USA; 2004.

Zhang YJ, Pu, ZJ, Qin ZW, Zhou XY, Liu D, Dai LT, Wang WB. A study on the overwintering of cucumber downy mildew oospores in China. J. Phytopathol. 2012; 160:469-474.

Aegerter BJ, Nuñez JJ, Davis RM. Detection and management of downy mildew in rose rootstock. Plant Dis. 2002; 86(12):1363-1368.

Heist EP, Nesmith WC, Schardl CL. Interactions of Peronospora tabacina with roots of Nicotiana spp. in gnotobiotic associations. Phytopathology. 2002;92: 400-405.

Falach-Block L, Ben-Naim Y, Cohen Y. Investigation of Seed transmission in Peronospora belbahrii the Causal Agent of Basil Downy Mildew. Agronomy. 2019; 9(4):205.

Farahani-Kofoet RD, Römer P, Grosch R. Systemic spread of downy mildew in basil plants and detection of the pathogen in seed and plant samples. Mycol prog. 2012; 11(4):961-6.

Kandel SL, Mou B, Shishkoff N, Shi A, Subbarao KV, Klosterman SJ. Spinach downy mildew: Advances in our understanding of the disease cycle and prospects for disease management. Plant Dis. 2019;103(5):791-803.

Jang P, Safeeulla KM. Modes of entry, establishment and seed transmission of Peronospora parasitica in radish. Proceedings: Plant Sciences. 1990;100(6): 369.

Saharan GS, Mehta N, Meena PD. Downy Mildew Disease of Crucifers: Biology, Ecology and Disease Management. Springer Singapore; 2017.

Williamson B, Breese WA, Shattock RC. A histological study of downy mildew (Peronospora rubi) infection of leaves, flowers and developing fruits of Tummelberry and other Rubus spp. Mycol Res. 1995;99(11):1311-6.

Baiswar P, Chandra S, Kumar R, Ngachan SV. Peronospora variabilis on Chenopodium murale in India. Australas Plant Dis. Notes. 2010;5:45–47.

Boulos L, Nabil el-Hadidi M. The weed flora of Egypt. The American University in Cairo Press, Cairo; 1989.

Choi YJ, Klosterman SJ, Kummer V, Voglmayr H, Shin HD, Thines M. Multi-locus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, Oomycota), including pathogens of beet and spinach. Mol Phylogenet Evol. 2015b;86: 24-34.

Göker M, García-Blázquez G, Voglmayr H, Tellería MT, Martín MP. Molecular taxonomy of phytopathogenic fungi: A case study in Peronospora. PloS One. 2009; 4(7):e6319.

Choi YJ, Hong SB, Shin HD. Re-consideration of Peronospora farinosa infecting Spinacia oleracea as distinct species, Peronospora effusa. Mycol Res. 2007;111:381–391.

Voglmayr H, Montes-Borrego M, Landa BB. Disentangling peronospora on papaver: Phylogenetics, taxonomy, nomenclature and host range of downy mildew of opium poppy (Papaver somniferum) and related species. Plos One. 2014;9:e96838.