VIABILITY AND ANTAGONISTIC ABILITY OF THE MOROCCAN STRAIN OF Trichoderma asperellum IN THE PRESENCE OF DIFFERENT HEAVY METALS

Main Article Content

A. OUAZZANI CHAHDI
N. MOUDEN
H. EL KAISSOUMI
K. SELMAOUI
J. DAHMANI
A. OUAZZANI TOUHAMI
R. BENKIRANE
A. DOUIRA

Abstract

The Moroccan strain of Trichoderma asperellum Banklt1902509 SMis 1 KU987252 RAB 95369 isolated from compost and the pathogenic fungus Verticillium dahliae were tested for their tolerance to heavy metals. The growth behavior of these two fungal species and biocontrol ability of T. asperellum against Verticillium dahliae were investigated as a function of both the concentration and type of metals. The growth test indicates that T. asperellum and V. dahliae can tolerate high concentrations of tested heavy metals. At 1000 mg.L-1 of Iron, Zinc, Copper or Sulphur, the colony diameter were respectively 60.8, 22.2, 31.8 and 5 mm relative to 68.1 mm in the control. As regards the germination percentages of T. asperellum conidia recovered from solid PSA medium, with Iron, Zinc, Copper or Sulphur concentration of 1000 mg.L-1 Zinc exhibited the height percentage (90.33%) followed by Iron (60%) whereas Sulphur caused complete inhibition (0%). In liquid medium, the germination percentages decreased to 7.67, 87.67, 0 and 67.67% respectively in presence of Iron, Zinc, Copper or Sulphur compared to 89.67% in control. The fresh biomass of T. asperellum decreased respectively from 7.003, 3.64, 0.364 and 2.342 g at 1000 mg.L-1 of Iron, Zinc, Copper and Sulphur compared to 9.761 g in control. At low concentration, FeSO4 and ZnCl2 have stimulated the sporulation of T. asperellum which produced 10.47×105 and 6.83×105 CFU.mm-2 respectively at 25 mg.L-1 of Iron and 0.25 mg.L-1 of Zinc in comparison to 6.26×105 CFU.mm-2 in control.The viability of T. asperellum in the soil with the heighest metal concentration (1000 mg.L-1) was reflected by maximum colonization percentages varied between 92.77% and 100%. Furthermore, in direct confrontation of T. asperellum, the growth inhibition of V. dahliae reached 71.83, 74.17 and 76.52% respectively in presence of 1000 mg.L-1 of Iron, Zinc, Copper and Sulphur compared to 71.83% in the control. However, those recorded by volatile metabolites were comparable to that of control (76.53%).

Keywords:
Trichoderma asperellum, heavy metals, tolerance, antagonism, saprophytic potential.

Article Details

How to Cite
CHAHDI, A. O., MOUDEN, N., KAISSOUMI, H. E., SELMAOUI, K., DAHMANI, J., TOUHAMI, A. O., BENKIRANE, R., & DOUIRA, A. (2019). VIABILITY AND ANTAGONISTIC ABILITY OF THE MOROCCAN STRAIN OF Trichoderma asperellum IN THE PRESENCE OF DIFFERENT HEAVY METALS. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 20(19-20), 869–889. Retrieved from http://www.ikprress.org/index.php/PCBMB/article/view/4760
Section
Original Research Article

References

Zauyah S, Juliana B, Noorhafizah R, Fauziah CI, Rosenami AB. Contamination and speciation of heavy metals in some cultivated and uncultivated ultisols and unceptisols in peninsular Malaysia. 3rd Australian New Zealand Soils Conference, University of Sydney, Australia; 2004.

Ledin M. Accumulation of metals by microorganisms– Processes and importance for soil systems. Earth Sci. Rev. 2000;51: 1–31.

Naseem R, Tahir SS. Removal of Pb (II) from aqueous/acidic solutions by using bentonite as an adsorbent. Wat. Res. 2001; 33(11):3982–3986.

Sirven Jean-Baptiste. Détection de métaux lourds dans les sols par spectroscopie d’émission sur plasma induit par laser (LIBS), phd; 2006.

Sharma RK, Agrawal M, Marshall F. Heavy metal contamination of soil and vegetables in Suburban areas of Varanasi, India. Elsevier Inc; 2005.

Volesky B. Advances in biosorption of metals: Selection of biomass types. FEMS Microbiol. Rev. 1994;14:291–302.

Kapoor A, Viraraghavan T. Fungal biosorption — An alternative treatment option for heavy metal bearing wastewaters: A review. Bioresource Technology. 1995;53(3):195-206.

Gupta R, Ahuja P, Khan S, Saxena RK. Microbial biosorbents: Meeting challenges of heavy metal pollution in aqueous solutions. Current Science. 2000;78:967-973.

Pagnanelli F, Petrangeli MP, Toro L, Trifoni M, Veglio F. Biosorption of metal ions on Anthrobacter sp.: Biomass characterization and biosorption modelling. Environ. Sci. Technol. 2000;34(13):2773-2778.

Gavrilesca M. Removal of heavy metals from the environment by biosorption. Eng. Life Sci. 2004;4(3):219-232.

Malik A. Metal bioremediation through growing cells. Environ Int. 2004;30:261–278.

Holan ZR, Volesky B. Biosorption of lead and nickel by sewaweed materials. Biotechnol. Bioeng. 1994;43:1001-1009.

Knaur K, Behra R, Sigg L. Absorption and uptake of copper by the green alga Scenedesmus subspicatus (Chlorophyta). J.Phycol. 1997;33:596-601.

Leuch A, Holan ZR, Volesky B. Biosorption of heavy metals (Cd, Cu, Ni, Pb and Zn) by chemically reinforced biomass of marine algae. J. Chem. Technol. Biotechnol. 1995;6:279-288.

Kapoor A, Viraraghavan T, Cullimore DR. Removal of heavy metals using the fungus Aspergillus niger. Biores. Technol. 1999; 70:95-104.

Melgar MJ, Alonso J, Pérez López M, García MA. Influence of some factors in toxicity and accumulation of cadmium from edible wild macro fungi in NW Spain. J. Environ Sci. Health B. 1998;33:439–55.

García MA, Alonso J, Fernández MI., Melgar MJ. Lead content in edible wild mushrooms in northwest Spain as indicator of environmental contamination. Arch Environ Contam Toxicol. 1998;34:330–5.

Alonso J, Salgado MJ, García MA, Melgar MJ. Accumulation of mercury in edible macrofungi: influence of some factors. Arch Environ Contam Toxicol. 2000;38: 158–62.

Kalač P, Svoboda L. A review of trace element concentrations in edible mushrooms. Food Chem. 2000;69:273–81.

Keskinkan O, Goksu MZL, Basibuyuk M, Forster CF. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol. 2004;92:197–200.

Krantz-Rülcker C, Allard B, Schnürer J. Adsorption of IIB-metals by three common soil fungi – comparison and assessment of importance for metal distribution in natural soil systems. Soil Biol. Biochem. 1996;28: 967–975.

Errasquin EL, Vázquez C. Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere. 2003;50:137–143.

Valix M, Loon LO. Adaptive tolerance behaviour of fungi in heavy metals. Miner. Engineering. 2003;16:193–198.

Muraleedharan TR, Venkobachar C, Leela I. Investigations of fungal fruiting bodies as biosorbents for the removal of heavy metals from industrial processing streams. Sep. Sci Technol. 1994;29:1893–903.

Muraleedharan TR, Venkobachar LI. Further insight into the mechanism of biosorption of heavy metals by Ganoderma lucidum. Environ Technol. 1994;15:1015–27.

Plaza G, Lukasik W, Ulfig K. Sorption of cadmium by filamentous soil fungi. Acta Microbiol Pol. 1996;45(2):193-201.

Zouboulis A, Rousou EG, Matis KA, Hancock IC. Removal of toxic metals from aqueous mixtures. Part 1: Biosorption. J Chem Technol Biotechnol. 1999;74:429–36.

Malgorzata K, Grzegorz M. The tolerance and Zn2+, Ba2+ and Fe3+ accumulation by Trichoderma atroviride and Mortierella exigua isolated from contaminated soil. Can. J. Soil. Sci. 2005;85(2):283-290.

Murugesan GS, Sathishkumar M, Swaminathan K. Arsenic from groundwater by pretreated waste tea fungal biomass. Bioresour Technol. 2006;97:483–7.

Oladipo OG, Awotoye OO, Olayinka A, Ezeokoli OT, Maboeta MS, Bezuidenhout CC. Heavy metal tolerance potential of Aspergillus strains isolated from mining sites. Bioremediation Journal. 2016;20(4): 287-297.

Addour L, Belhocine D, Boudries N, Comeau Y, Pauss A, Mameri N. Zinc uptake by Streptomyces rimosus biomass using a packed-bed column. J. Chem. Technol. Biotechnol. 1999;74:1089- 1095.

Samuel GJ. Trichoderma: A review of biology and systematics of the genus. Mycol Res. 1996;100:923-935.

Williams J, Clarkson JM, Mills PR, Cooper RM. Saprotrophic and mycoparasitic components of aggressiveness of Trichoderma harzianum groups toward the commercial mushroom Agaricus bisporus. Appl. Environ. Microbiol. 2003;69:4192–4199.

Benitez T, Rincon AM, Limon CM, Condon AC. Biocontrol mechanisms of Trichoderma strains. Int. Micobiol. 2004;7: 249.

Papavizas GS. Trichoderma and Gliocladium. Biology, ecology and potential for biocontrol. Ann. Rev. Phytopathol. 1985;23:23.

Zarei M, Hempel S, Wubet T, Schafer T, Savaghebi G, Jouzani GS, Nekouei MK, Buscot F. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution. 2010;158:2757-2765.

Miransari M. Hyper accumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances. 2011;29:645-653.

Orlowska E, Przybylowicz W, Orlowski D, Turnau K, Mesjasz-Przybylowicz J. The effect of mycorrhiza on the growth and elemental composition of Ni-hyper accumulating plant Berkheya coddii Roessler. Environmental Pollution. 2011; 159:3730-3738.

Rajkumar M, Sandhya S, Prasad MN, Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances. 2012;30:1562-1574.

Chliyeh M, Ouazzani Chahdi A, Selmaoui K, Ouazzani Touhami A, Filali Maltouf A, El Modafar C, Moukhli A, Oukabli A, Benkirane R, Douira A. Effect of Trichoderma harzianum and Arbuscular mycorrhizal fungi against Verticillium wilt of tomato. International Journal of Recent Scientific Research Research. 2014;5(2): 449-459.

Sy AA. Contribution à l'étude de Pyricularia oryzae Cav. Recherche in vitro d'antagonistes dans une perspective de lutte biologique. Thèse Docteur-Ingénieur, n°534, INP Toulouse; 1976.

Dennis C, Webster J. Antagonistic properties of species-group of Trichoderma. II. Production of volatile antibiotics. Transactions of the British Mycological Society. 1971b;57:41-48.

Dennis C, Webster J. Antagonistic properties of species-group of Trichoderma. I. Production of non volatile antibiotics. Transactions of the British Mycological Society. 1971a;57:25-39.

Siddiquee S, Aishah SN, Azad SA, Shafawati SN, Naher L. Tolerance and biosorption capacity of Zn2+, Pb2+, Ni3+ and Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride and T. virens). Advances in Bioscience and Biotechnology. 2013;4:570-583.

Nur Liyana I, Nur Ain Izzati MZ, Tan SG. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Journal of Environmental Science. 2011;23:824-830.

Errifi A, Ouazzani Chahdi A, Selmaoui K, Benkirane R, Ouazzani Touhami A, Douira A. Etude de l’influence de différents métaux sur le développement et l’activité saprophytique de deux espèces de Trichoderma. International Journal of Innovation and Scientific Research. 2016; 23(1):185-195.

Abdullahi HJ, Alonge SO, Zarafi AB. Influence of selected heavy metal on mycelial growth response of Trichoderma isolate. International Research Journal of Biological Sciences. 2018;7(11):10- 17.

Ezzouhri L, Castro E, Moya M, Espinola F, Lairini K. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. African Journal of Microbiology Research. 2009;3(2):35-48.

Raspanti E, Santa OC, Cecilia G, Luis CR, Irene G. Implications of cysteine metabolism in the heavy metal response in Trichoderma harzianum and in three Fusarium species. Chemosphere. 2009;76: 48–54.

Hai-Yan LI, Dong-Wei LI, Cai-Mei HE, Zuo-Ping Zhou, Tao MEI, Hong-Mei XU. Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb and Zn mine wasteland in China. Fungal Ecology. 2012;5(3):309–315.

Fomina MA, Alexander IJ, Colpaert JV, Gadd GM. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biology & Biochemistry. 2005;37:851-866.

Hajieghrari B. Effect of some metal-containing compounds and fertilizers on mycoparasite Trichoderma species mycelia growth response. African Journal of Biotechnology. 2010;9(26):4025-4033.

Gadd GM. Interaction of fungi with toxic metals. New Phytol. 1993;124:25-60.

Baldrian P, Gabriel J, Nerud F. Effect of cadmium on the ligninolytic activity of Stereum hirsutum and Phanerochaete chrysosporium. Folia Microbiology (Prague). 1996;41:363-367.

Zhang YJ, Zhang Y, Liu MJ, Shi XD, Zhao ZW. Dark septate endophyte (DSE) fungi isolated from metal polluted soils: Their taxonomic position, tolerance and accumulation of heavy metals in vitro. Journal of Microbiology. 2008;46:624-632.

Soleimani M, Hajabbasi MA, Afyuni M, Mirlohi A, Borggaard OK, Holm PE. Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca Arundinacea and Festuca Pratensis. International Journal of Phytoremediation. 2010;12:535-549.

Ropek D, Para A. The Effect of heavy metal ions and their complexions upon growth, sporulation and pathogenicity of the entomopathogenic fungus Paecilomyces farinosus. Polish Journal of Environmental Studies. 2003;12(2):227-230.

Gadd GM. Fungi and yeast metal accumulation: Microbial mineral recovery. McGraw-Hill, New York; 1990.

Yazdani M, Yap CK, Abdullah F, Tan SG. An in vitro study on the adsorption, absorption and uptake capacity of Zn by the bioremediator Trichoderma atroviride. Environment Asia. 2010;3(1):53-59.

Collin-Hansen C, Andersen RA, Steinnes E. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis. J. Phys. 2003;107:311- 314.

Collin-Hansen C, Adersen RA, Steinnes E. Molecular defense systems are expressed in the king bolete (Boletus edulis) growing near metal smelters. Mycologia. 2005;97: 973-983.

Gadd GM. Bioremedial potential of microbial mechanisms of metal mobilize-tion and immobilization. Curr. Opin. Biotechnol. 2000;11:271-279.

Gadd, GM. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res. 2007; 111(1):3-49.

Chew AW, Ab Rahman NNN, Ab Kadirand MO, Chen CC. Dried and wet Trichoderma sp. biomass adsorption capacity on Ni, Cd and Cr in contaminated groundwater. International Conference on Environmental and Science. 2012;30:51-57.

García-Toledo A, Babich H, Stotzky G. Training of Rhizopus stolonifer and Cunninghamella blakesleeana to copper: Cotolerance to cadmium, cobalt, nickel and lead. Can. J. Microbiol. 1985;31:485–492.

Nongmaithem N, Roy A, Bhattacharya PM. Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Braz J. Microbiol. 2016;47(2): 305-13.

Deshmokh SK, Rai MK. Biodiversity of fungi, their role in human life. Science Publisher Inc., Enfield; 2005.

Sim Carrie Siew Fang, Cheow Yuen Lin, Ng Si Ling, Ting Adeline Su Yien. Antifungal activities of metal-tolerant endophytes against Ganoderma boninense under the influence of metal stress. Biological Control. 2019;130:9–17.

Ting Adeline Su Yien, Jioe Erica. In vitro assessment of antifungal activities of antagonistic fungi towards pathogenic Ganoderma boninense under metal stress. Biological Control. 2016;96:57– 63.

Shen Mi, Liu Li, Dong-Wei Li, Wen-Na Zhou, Zuo-Ping Zhou, Chang-Fei Zhang, Yi-Yong Luo, Hong-Bin Wang, Hai-Yan Li. The effect of endophytic Peyronellaea from heavy metal-contaminated and uncontaminated sites on maize growth, heavy metal absorption and accumulation. Fungal Ecology. 2013;6(6):539–545.

Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004a;2:43–56.

Harman GE, Lorito M, Lynch JM. Uses of Trichoderma spp. to remediate soil and water pollution. Adv. Appl. Microbiol. 2004(b);56:313–330.

Lorito M, Woo SL, Harman GE, Monte E. Translational research on Trichoderma: from Omics to the field. Ann. Rev. Phytopathol. 2010;48:395–417.

Ting ASY, Choong CC. Bioaccumulation and biosorption efficacy of Trichoderma isolates SP2F1 in removing Copper (Cu II) from aqueous solutions. World J. Micro-biol. Biotechnol. 2009;25:1431- 1437.

McGrath SW, Zhao FJ, Lombi E. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil. 2001;232:207–214.

Kredics L, Antal K, Manczinger L, Nagy E. Breeding of mycoparasitic Trichoderma strains for heavy metal resistance. Letters in Applied Microbiology. 2001;33(2):112-6.

Ahmad I, Ansari MI, Aqil F. Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution. Indian J. Exp. Biol. 2006;44(1):73-76.

Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT, Tripathi RD. Trichoderma, a potential bioremediator for environmental cleanup. Clean Techn Environ Policy. 2013;15:541–550.